Open AriveLab

Visual World Models as "Foundation" Models for Autonomous Systems

Li Chen

OpenDriveLab at Shanghai AI Lab

June 17, 2024

Autonomous Systems (Agents)

Environment

Multimodal contexts

Reason & Act (Interact)

Autonomous Systems (Agents)

Open 🔁 rive Lab

World Model

- Selected concepts, and relationships between them, to represent the whole system
- A memory component that makes predictions about future codes based on historical information
- Train a simple controller with the internal world model

World Model

A Path Towards Autonomous Machine Intelligence Version – Yann Lecun

World Model

Foundation Models

Mind-blowing Part

Weakness Samples

Are foundation models like Sora and LLMs world models?

Can Language Models Serve as Text-Based World Simulators?

Ruoyao Wang[†], Graham Todd[‡], Ziang Xiao[♠], Xingdi Yuan[♦] Marc-Alexandre Côté[♦], Peter Clark[♣], Peter Jansen[†][♣] [†]University of Arizona [♦]Microsoft Research Montréal [‡]New York University [♠]Johns Hopkins University [♣]Allen Institute for AI {ruoyaowang, pajansen}@arizona.edu gdrtodd@nyu.edu ziang.xiao@jhu.edu {eric.yuan, macote}@microsoft.com PeterC@allenai.org

- Large corpus of data
- Effective generalization
- Diverse range of use cases
- Self-supervision (generally)

"Foundation" Models for Autonomous Systems

Towards Intelligent, Reliable and Generalizable System

- "Foundation" Models for Autonomous Systems

Foundation Model:

- Large corpus of data
- Effective generalization
- Diverse range of use cases
- Self-supervision (generally)

Raw data	Labeled data
World knowledge	Task-wise optimization
Self-supervised learning	Supervised learning

Representation Learning

Visual World Models

Х

Specific Task Models

Summary (Questions)

Data

• **Question 1:** How can we find large corpus of data for autonomous driving, which helps effective generalization ability?

Model

• Question 1: How can we train a world model with intricate world knowledge, with self-supervised learning?

Application

• **Question 1**: What are the abilities of the world model?

Highlight Thu. 20 Jun 5 p.m – 6:30 p.m Arch 4A-F Poster #5

Generalized Predictive Model for Autonomous Driving

Jiazhi Yang

Shenyuan Gao

Yihang Qiu

Li Chen

Tianyu Li

Bo Dai

Kashyap Chitta

Penghao Wu

Jia Zeng

Ping Luo

Jun Zhang

Andreas Geiger

Hongyang Li

arXiv: https://arxiv.org/abs/2403.09630 •

Yu Qiao

dataset: https://github.com/OpenDriveLab/DriveAGI •

GenAD | At a Glance

- arXiv: <u>https://arxiv.org/abs/2403.09630</u>
- dataset: <u>https://github.com/OpenDriveLab/DriveAGI</u>

Highlight

Thu. 20 Jun 5 p.m – 6:30 p.m Arch 4A-E Poster #5

A large-scale video prediction model on web-scale driving videos, to enable its generalization across a wide spectrum of domains and tasks.

Dataset in Autonomous Driving

Open 🗛 riveLab

Data | Scale-up Driving Videos

OpenDV: the largest public driving video datasets

Data | OpenDV

Massive YouTube videos, collected worldwide

- Diverse, in geography, weather, scenes, traffic, etc.
- No label (vehicle action, 3D boxes, calibrations, etc.)

Data | OpenDV

- Largest public dataset up-to-date for autonomous driving
- 2059 hours, 709 areas

	Dataset	Duration (hours)	Front-view Frames	Geographic Countries	Diversity Cities	Sensor Setup
×	KITTI [14]	1.4	15k	1	1	fixed
X	Cityscapes [10]	0.5	25k	3	50	fixed
×	Waymo Open* [41]	11	390k	1	3	fixed
×	Argoverse 2* [45]	4.2	300k	1	6	fixed
1	nuScenes [6]	5.5	241k	2	2	fixed
1	nuPlan [7]	120	4.0M	2	4	fixed
1	Talk2Car [12]	4.7	-	2	2	fixed
1	ONCE [32]	144	7M	1	-	fixed
1	Honda-HAD [23]	32	1.2M	1	-	fixed
1	Honda-HDD-Action [38]	104	1.1M	1	-	fixed
1	Honda-HDD-Cause [38]	32	-	1	-	fixed
✓–	OpenDV-YouTube (Ours) OpenDV-2K (Ours)	1747 2059	60.2M 65.1M	$\begin{vmatrix} \geq 40^{\dagger} \\ \geq 40^{\dagger} \end{vmatrix}$	≥709† ≥ 709 †	uncalibrated uncalibrated

OpenDV-2K (Ours) 🚀

- arXiv: <u>https://arxiv.org/abs/2403.09630</u>
- dataset: <u>https://github.com/OpenDriveLab/DriveAGI</u>

Data | OpenDV

- arXiv: <u>https://arxiv.org/abs/2403.09630</u>
- dataset: <u>https://github.com/OpenDriveLab/DriveAGI</u>

Model | Video Prediction Model for Driving

Keys

- GenAD (5.9B) = SDXL (2.7B) + Temporal Reasoning Blocks (2.5B) + CLIP-Text (0.7B)
- Tuning the image generation model into a highly-capable video prediction model

Model | Video Prediction Model for Driving

Designs

- Interleaved temporal blocks: Sufficient spatiotemporal interaction.
- Decoupled spatial attention: Efficient long-range modeling.
- **Causality mask:** Coherent future prediction and avoid causal confusion.

Open PriveLab

Attention Direction

Æ

Zero Init Decoupled SA

Zero Init

Tasks | Zero-shot Generalization (Video Prediction)

Zero-shot video prediction on unseen datasets including Waymo, KITTI and Cityscapes

Tasks | Language-conditioned Prediction

"Drive slowly down at intersection, several barriers beside the road"

"Turn right, some parked cars, a parking lot"

Tasks | Action-conditioned Prediction (Simulation)

Method	Condition	nuScenes Action Prediction Error (↓)		
Ground truth	-	0.9		
GenAD	text	2.54		
GenAD-act	text + traj.	2.02		

Table 4. **Task on Action-conditioned prediction**. Compared to GenAD with text conditions only, GenAD-act enables more precise future predictions that follow the action condition.

Simulate the future differently conditioned on **future trajectory.**

Tasks | Planning (Representation Learning)

]	Method	# Trainable	nuScenes			
		Params.	ADE (\downarrow)	FDE (\downarrow)		
	ST-P3* [20]	10.9M	2.11	2.90		
	UniAD* [22]	58.8M	1.03	1.65		
	GenAD (Ours)	0.8M	1.23	2.31		

• Speeding up training by **3400 times** (vs. **UniAD**) w/o ego status

Summary

Data

• Takeaway 1: Largest available driving video dataset: OpenDV (2000+ hours). The great diversity ensures generalization.

Model

• Takeaway 1: Can be a video prediction model conditioned on high-level instructions.

Application

• **Takeaway 1:** Learned representations can be simply trained for policy prediction.

Summary (Question)

Data

• Takeaway 1: Largest available driving video dataset: OpenDV (2000+ hours). The great diversity ensures generalization.

Model

- Takeaway 1: Can be a video prediction model conditioned on high-level instructions.
- Question 2: How about more direct conditions (in the real world)?

Application

- **Takeaway 1:** Learned representations can be simply trained for policy prediction.
- Question 2: How about the typical application such as rewarding for model-based RL?

- arXiv: https://arxiv.org/abs/2405.17398
- demo page: https://vista-demo.github.io/
- code: <u>https://github.com/OpenDriveLab/Vista</u>

Vista: A Generalized Driving World Model with High Fidelity and Versatile Controllability

Shenyuan Gao

Jiazhi Yang

Li Chen

Kashyap Chitta

Yihang Qiu

Andreas Geiger

Jun Zhang

Hongyang Li

Driving World Models

Method	Model Setups			Action Control Modes			
Ivietnou	Data Scale	Frame Rate	Resolution	Angle&Speed	Trajectory	Command	Goal Point
DriveSim [99]	7h	5 Hz	80×160	1			
DriveGAN [66]	160h	8 Hz	256×256				
DriveDreamer [122]	5h	12 Hz	128×192	1			
Drive-WM [124]	5h	2 Hz	192×384		1		
WoVoGen [87]	5h	2 Hz	256×448				
ADriver-I [60]	300h	2 Hz	256×512			1	
GenAD [133]	2000h	2 Hz	256×448		1	1	
GAIA-1 [53]	4700h	25 Hz	288×512	1			
Vista (Ours)	1740h	10 Hz	576×1024	✓	1	1	1

Vista | Versatile action controllability

From high-level intentions (command, goal point) to low-level maneuvers (trajectory, angle, and speed)

Vista | Model

High-fidelity

•

•

- Dynamic Prior Injection: Replacing the latent to absorb varying numbers of condition frames
- **Dynamics Enhancement** Loss: Dynamics-aware weight to highlight dynamic regions •
- Structure Preservation Loss: Preserve high-frequency structured features •

Vista | Video Prediction

• High-fidelity future prediction

• Continuous long-horizon rollout (15 seconds)

Vista | Zero-shot Action Controllability

* The commands above are translated from trajectories, or angles+speed.

Vista | Reward

• Drive-WM rewards

Drive-WM, CVPR'24

• Provide reward without ground truth actions, by uncertainty

Reasonable rewards

More reasonable than ADE

Summary (Question)

Data

• Takeaway 1: Largest available driving video dataset: OpenDV (2000+ hours). The great diversity ensures generalization.

Model

- Takeaway 1: Can be a video prediction model conditioned on high-level instructions.
- Takeaway 2: We can inject kinds of conditions with efficiently to make it a real world model / simulator.

Application

- Takeaway 1: Learned representations can be simply trained for policy prediction.
- **Takeaway 2**: The stochastic diffusion process learns inherent rewards.

Can we have more industry-friendly approaches, including data, model, and tasks' application? Also, evaluations?

Motivation

- The industry has accumulated huge amount of **image-LiDAR** data with test vehicles
- image-LiDAR naturally has both semantic and geometric clues

Pre-training with Point Cloud & Visual <u>Image</u>

Open AriveLab

Weng et al. S2Net: Stochastic Sequential Pointcloud Forecasting. ECCV, 2022.
Khurana et al. Point Cloud Forecasting as a Proxy for 4D Occupancy Forecasting. CVPR, 2023.

ViDAR | Motivation

VIDAR in multi-view stereo (from Mobileye, CES 2021)

VIDAR

"Visual Lidar": DNN-based Multi-view Stereo

Redundant to the appearance and measurement engines
handling "rear protruding" objects – which hover above the object's ground plane.

Note:

- Reconstruction purpose
- Lack of exploration in temporal dimension
- More geometric estimation, lack of the reasoning ability of the environment

ViDAR | Motivation

VIDAR in depth estimation (from TRI)

TRI-VIDAR

Installation | Configuration | Datasets | Visualization | Publications | License

Official PyTorch repository for some of TRI's latest publications, including selfsupervised learning, multi-view geometry, and depth estimation. Our goal is to

provide a clean environment to reproduce our results and facilitate further research in this field. This repository is an updated version of PackNet-SfM, our previous monocular depth estimation repository, featuring a different license.

Note:

TOYOTA RESEARCH INSTITUTE

- Reconstruction purpose
- Lack of exploration in temporal dimension
- More geometric estimation, lack of the reasoning ability of the environment

Highlight Thu. 20 Jun 5 p.m – 6:30 p.m Arch 4A-E Poster #6

Visual Point Cloud Forecasting enables Scalable Autonomous Driving

Jiazhi Yang

Li Chen

Yanan Sun

Hongyang Li

- arXiv: https://arxiv.org/abs/2312.17655
- code: https://github.com/OpenDriveLab/ViDAR

Open 🔁 rive Lab

ViDAR | At a Glance

Training multimodal world model by **Visual Point Cloud Forecasting** and boosting **End-to-End Autonomous Driving**.

- **Highlight** Thu. 20 Jun 5 p.m — 6:30 p.m Arch 4A-E Poster #6
- arXiv: <u>https://arxiv.org/abs/2312.17655</u>

• code:

https://github.com/OpenDriveLab/ViDAR

ViDAR | Architecture

- History Encoder: Target pre-training structure, extracting BEV embeddings from visual inputs.
- Latent Rendering: Extract geometric latent space. Removing ray-shape ambiguities by volume rendering in feature space.
- Future Decoder: Iteratively predict future BEV features, conditioned on ego-motion.

ViDAR | World Model in Driving

The First Multimodal World Model

Visual Inputs -1s, -0.5s, Os

LiDAR Outputs

ViDAR | Future Prediction

ViDAR effectively models relative motion, and motion of other objects.

Visual Inputs -1s, -0.5s, Os LiDAR Outputs 0.5s, 1s, 1.5s, 2s, 2.5s, 3s Visual Inputs -1s, -0.5s, Os **LiDAR** Outputs 0.5s, 1s, 1.5s, 2s, 2.5s, 3s

ViDAR | Downstream Tasks

Pre-training by visual point cloud forecasting helps end-to-end autonomous driving

Method	Detection		Tracking			Mapping		Motion Forecasting			Future Occupancy Prediction				Planning	
	NDS \uparrow	$mAP\uparrow$	AMOTA↑	AMOTP↓	IDS↓	IoU-lane↑	IoU-road↑	minADE↓	minFDE↓	MR↓	IoU-n.↑	IoU-f.↑	VPQ-n.↑	VPQ-f.↑	avg.L2↓	avg.Col.↓
UniAD	49.36	37.96	38.3	1.32	1054	31.3	69.1	0.75	1.08	0.158	62.8	40.1	54.6	33.9	1.12	0.27
ViDAR	52.57	42.33	42.0	1.25	991	33.2	71.4	0.67	0.99	0.149	65.4	42.1	57.3	36.4	0.91	0.23

Summary

Data

- Takeaway 1: Largest available driving video dataset: OpenDV (2000+ hours). The great diversity ensures generalization.
- **Takeaway 2**: The image and LiDAR pairs are very helpful to capture both semantic and geometric information in the environment.

Model

- **Takeaway 1:** Can be a video prediction model conditioned on high-level instructions.
- **Takeaway 2**: We can inject kinds of conditions with efficiently to make it a real world model / simulator.
- Takeaway 3: BEV-based models (c.f. videos) are also effective world models.

Application

- **Takeaway 1:** Learned representations can be simply trained for policy prediction.
- **Takeaway 2**: The stochastic diffusion process learns inherent rewards.
- Takeaway 3: Spatio-temporal pre-training improves all tasks in driving and serves as a foundation model.

Open 🔁 riveLab

How about robotics?

Challenges

- Heavy interactions between robots and environments
- More diverse tasks and environments

Open AriveLab

Visual data

World knowledge

Representation learning

Visual World Models

w/ Highlighted Interaction

Learning Manipulation by Predicting Interaction (MPI)

Robotics: Science and Systems (RSS) 2024, Delft, Netherlands

- arXiv: <u>https://arxiv.org/abs/2406.00439</u>
- project page: <u>https://opendrivelab.com/MPI</u>
- code: <u>https://github.com/OpenDriveLab/MPI</u>

Existing works

- High-level semantics
- Or low-level details

MPI (Ours)

- Interactive dynamics (patterns of behavior and physical interactions)
- w/ both high-level semantics and low-level details

MPI | Interaction Prediction

Two Training Objectives Input Output "where to interact" "how to interact" Computation Node ∇ **Initial frame Transition frame Transition / Future states** Visual World Models w/Highlighted Interaction pre-condition ost-condition Ego4D State-change: Plant removed from ground Hand-and-Object subset

State-change: Wood smoothed

Open **A**riveLab

final frame

MPI | Model

"where to interact"

Open 🔁 rive Lab

MPI | Model

"where to interact"

MPI | Results

Demos in clean background with varied positions/angles/etc

MPI | Results

Real-robot Experiments

1.2.1 07

Visuomotor Control in Simulation

Referring Expression Grounding

The Stapler in front and on the top-left of the food bag.

MPI | Generalization Results

Generalization Validation

Robustness to Visual Distractions

(a) Original Setting

(b) BG. Distraction

(c) Obj. Variation

Object Variation

White plastic pot \rightarrow Wooden pot

Background Distraction

 $\textbf{Daisies} \rightarrow \textbf{Roses}$

Conclusion

- Data: Visual data, like large-scale videos and image-LiDAR pairs, are valuable to train a generalized world model by self-supervised learning.
- **Model:** World models have **different forms**, like videos and BEVs, and **different conditions**; all serving as effective environmental abstractions.
- Application: Learning representations by learning world models are helpful for multiple applications, including **policy** learning, reward evaluation, and diverse driving tasks.

Visual World Models as Foundation Models for Autonomous Agents

Visual World Models with LLM/VLMs as Foundation Models for Autonomous Agents

Open 🔁 riveLab

Thank you

 \bigcirc

0