Foundation Models as Real-World Simulators

CVPR 2024 Workshop

Sherry Yang

Advances in Machine Learning

Outperforming humans in Go

Generating language, image, and video

Decision Making

Decision Making and Internet-Scale Knowledge

ALPHAGO
00:08:32

Alphago
Alphago
Coogle DeepMind

This talk: Use internet-scale data to simulate the real world

When Has Decision Making Worked?

Time

When Has Decision Making Worked?

When Has Decision Making Struggled?

What if We Can Learn a Realistic Simulator?

Foundation Models as Real-World Simulators

✓ World model

from internet data

Algorithms

for decision making

and next steps

- [1] **Yang** et al. Learning Interactive Real-World Simulators. ICLR 2024.
- [2] **Yang** et al. Video as the New Language for Real-World Decision Making. ICML 2024.
- [3] Yang*, Du*, et al. Learning Universal Policies via Text-Guided Video Generation. NeurIPS 2023.
- [4] Du, **Yang**, et al. Video Language Planning. ICLR 2024.

Foundation Models as Real-World Simulators

✓ World model

from internet data

- [1] **Yang** et al. Learning Interactive Real-World Simulators. ICLR 2024.
- [2] **Yang** et al. Video as the New Language for Real-World Decision Making. ICML 2024.
- [3] Yang*, Du*, et al. Learning Universal Policies via Text-Guided Video Generation. NeurIPS 2023.
- [4] Du, Yang, et al. Video Language Planning. ICLR 2024.

Unified representation

Unified representation

Unified representation

Unified representation

Unified representation

Unified tasks

A person throwing a frisbee

Background: Image Diffusion Models

Adapting Diffusion for World Modeling

Repeat the first frame: long-term consistency

Condition on image & text: controllable generation

➤ Temporal super-resolution: flexible time horizon

Adapting Diffusion for World Modeling

	Dataset	# Examples
Simulation	Habitat HM3D (Ramakrishnan et al., 2021)	710
	Language Table sim (Lynch & Sermanet, 2020)	160k
Real Robot	Bridge Data (Ebert et al., 2021)	2k
	RT-1 data (Brohan et al., 2022)	70k
	Language Table real (Lynch & Sermanet, 2020)	440k
	Miscellaneous robot videos	133k
Human activities	Ego4D (Grauman et al., 2022)	3.5M
	Something-Something V2 (Goyal et al., 2017)	160k
	EPIC-KITCHENS (Damen et al., 2018)	25k
	Miscellaneous human videos	50k
Panorama scan	Matterport Room-to-Room scans (Anderson et al., 2018)	3.5M
Internet text-image	LAION-400M (Schuhmann et al., 2021)	400M
	ALIGN (Jia et al., 2021)	400M
Internet video	Miscellaneous videos	13M

21M videos, 800M images

[1] Yang et al. Learning Interactive Real-World Simulators. ICLR 2024.

UniSim: An Interactive Real-World Simulator

Foundation Models as Real-World Simulators

✓ World model

from internet data

Takeaway: Unified repr & task interface

Foundation Models as Real-World Simulators

✓ World model

from internet data

Algorithms

for decision making

Takeaway: Unified repr & task interface

Simulator

	Succ. rate (all)	Succ. rate (pointing)
VLA-BC	0.58	0.12
UniSim-RL	0.81	0.71

Table 3: **Evaluation of RL policy.** Percentage of successful simulated rollouts (out of 48 tasks) using the VLA policy with and without RL finetuning on Language Table (assessed qualitatively using video rollouts in UniSim). UniSim-RL improves the overall performance, especially in pointing-based tasks which contain limited expert demonstrations.

Simulator

Put the fruits into the top drawer

Synthesized video

Robot execution

$$\Delta x, \Delta y = f(s, s')$$

Inverse Dynamics

[1] Yang*, Du*, et al. Learning Universal Policies via Text-Guided Video Generation. NeurIPS 2023.

[2] Du, Yang, et al. Video Language Planning. ICLR 2024.

Vision language model

Vision-language reward model

Planning with UniSim – Why?

Planning with UniSim – Why?

Planning with UniSim – Why?

Make Line Model Reward Completion UniPi 44.0 4% LAVA 33.5 0% RT-2 36.5 2% PALM-E 26.2 0% **VLP** 65.0 16%

Benefits:

- (1) Internet-scale data
- (2) Temporal flexibility
- (3) Search, planning, verify at each level

Long-Horizon Planning with UniSim

Multi-Task Planning with UniSim

Place your hand above Open the air frier with Pour coins into the cup the blue cube gripper Push the blue cube Reach for the green Stack orange object on the green object bottle closer to red circle

Unified action & obs spaces

Generating Training Data for VLMs

Generating Training Data for VLMs

	Activity	MSR-VTT	VATEX	SMIT
No finetune	15.2	21.91	13.31	9.22
Activity	54.90	24.88		16.91
Simulator	46.23	27.63	40.03	20.58

Table 4: **VLM trained in the UniSim** to perform video captioning tasks. CIDEr scores for PaLI-X finetuned only on simulated data from the UniSim compared to no finetuning and finetuning on true video data from ActivityNet Captions. Finetuning only on simulated data has a large advantage over no finetuning and transfers better to other tasks than finetuning on true data.

Foundation Models as Real-World Simulators

✓ World model

from internet data

Algorithms

for decision making

Takeaway: Unified repr & task interface

Takeaway: RL, planning in the world model

Foundation Models as Real-World Simulators

World model

from internet data

Algorithms

for decision making

and next steps

Takeaway: Unified repr & task interface

Takeaway: RL, planning in the world model

Better World Models: Hallucination

Better World Models: Hallucination

Better World Models: Hallucination

Text: Wash hands

Better World Models: Evaluation and Feedback

Better World Models: Evaluation and Feedback

Collaborators

Yilun Du

Bo Dai

Hanjun Dai

Ofir Nachum

Kamyar Ghasemipour

& many others

Jonathan Tompson Leslie Kaelbling Dale Schuurmans

Pieter Abbeel

Google DeepMind

Thank You. Questions?