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World Championship Qualifiers

Name 3 laps (seconds)
1 MinChan ‘MCKFPV’ Kim 27.057
2 Konstantin ‘KostaFPV’ Sonnentag
3 Levi ‘Leviathann’ Johnson
4 Silas ‘Propsicle’ Aaron 29.329408
5 Marvin ‘MARV_FPV’ Schapper 29.748
6 Mason ‘Hyper’ Lively 29.81888
7 Jacob ‘JakeHammer’ Capobres 30.010368
8 Evan ‘headsupfpv’ Turner 30.019584
9 Ashton ‘Drobotracer’ Gamble 30.400992
10 Sebastian ‘SebaFPV’ Espinal 30.44
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Racing is not a good fit for Imitation Learning
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Deep Drone Racing: From Simulation to the Real World Using Domain Randomization. Loquercio et al.
T-RO Best Paper Honorable Mention




A Modular Approach
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Making the comparison as fair as possible

* The same drone.
 Compensation for human perception latency at the start.

But

 We use an onboard inertial measurement unit (IMU). But our camera
updates only at 30Hz (120Hz for humans).

* We have lower latency (40ms vs ~200ms for humans). Unclear if that
matters since the environment is predictable.



Statistics of Racing against Professional Pilots

Head-to-Head Racing Results

Number of Races Best Time-to-Finish Wins Losses Win Ratio
A.Vanover vs. Swift 9 17.956 S 4 5 0.44
T. Bitmatta vs. Swift 7 18.746 5 3 4 0.43
M. Schaepper vs. Swift 9 21.160 S 3 6 0.33
Swift vs Human Pilots 25 17.465 S 15 10 0.60




Differences Human vs. Autonomous

The Autonomous Drone ...

... does not always fly faster
... Iis faster at the start

Human
Autonomous
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Champion-level drone racing using deep
reinforcementlearning
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The Human Champions










My Definition of Embodied Intelligence




How to get there?

» “Collect a lot of teleoperation data”

* “Tune costs/rewards”



How to get there?

» “Collect a lot of teleoperation data.”

* “Learn to predict the world.” (akin to self-supervised learning)

* “Tune costs/rewards”



earning Visual Locomotion with
Cross-Modal Supervision

Loquercio A., Kumar A., Malik J.




Previous Work on Vision-Based Locomotion

LEARNING VISION-GUIDED QUADRUPEDAL LOCO-
MOTION END-TO-END WITH CROSS-MODAL TRANS-

FORMERS
Learning robust perceptive locomotion for quadrupedal
Ruiban Yang®  Minghso Zhang’ robots in the wild
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Figure 1: Our robot can traverse a varicty of challenging termain in indoor and outdoor covironments, urban and
natural semngs during day and night using a sm;lc front-facing depth camera. The robot can traverse curbs,




Actions
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RGB Vision




Real World Simulation

RGB Vision

Terrain
Properties

Proprio-
ception

Hwangbo et al., 2019
Lee et al., 2020
Kumar et al., 2020



How do we train this estimator?

RGB Vision

Terrain

p : 1. We can’t use existing datasets
roperties

2. Humans can’t provide annotations



Proprioception to Estimate Terrain Properties
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Cross-Modal Supervision
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Visual Plasticity

Before Adaptation

After 1min of data

(1)



Takeaways

e Use a self-supervised loss (predict one sensor from the other) to recover
from failures and/or adapt to novel conditions.

* Interaction is a tool to learn about the environment.
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Hearing Hands:
Generating Sounds from Physical Interactions in 3D Scenes
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redicting the sound of actions
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Predicting the Sound of Actlons

e Step 1: Pick a location to
interact with ina 3D
scene




Predicting the Sound of Actions

e Step 1: Pick a location to skl
interact with in a 3D
scene

e Step 2: Record the
desired hand motion



Predicting the Sound of Actions

* Step 1: Pick a location to |[EEe==E

interact with ina 3D
scene —

s

e Step 2: Record the
desired hand motion

* Step 3: Generate
synthetic interaction
sound




Predicting the Sound of Actions




Predicting the Sound of Actions
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Predicting the Sound of Actions




Sound generation model

Video frames (4 Hz)
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A Dataset of Hand-Generated Sounds

Register to the
existing reconstruction
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A Dataset of Hand-Generated Sounds

Register to the
existing reconstruction




A Dataset of Hand-Generated Sounds




A Dataset of Hand-Generated Sounds

Original Video Rendered Video
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A Dataset of Hand-Generated Sounds




Let’s Play a Game



Which one is generated?

Generated



Which one is generated?

Generated



Which one is generated?

Generated



User Study
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Human Perception of Sound

What in the World Do We Hear?:
An Ecological Approach to Auditory Two types of sound
Event PEI‘CGptiOI‘l perception:

William W. Gaver . . .
Pank Xerow EuroPARC 1. Musical Listening

2. Everyday Listening

Everyday listening is the experience of hearing events in the world rather than
sounds per se. In this article, | take an ecological approach to everyday listening to
overcome constraints on its study implied by more traditional approaches. In
particular, [ am concerned with developing a new framework for describing sound
in terms of audible source attributes. An examination of the continuum of
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A Diverse Array of Sensors

Camera Microphones (x2) Photoresistors (x2)

Cooling Fan

Internal:
6-axis IMU
Temperature Sensor
Humidity Sensor

Limit Switch
Bumpers (x4)



The Beauty of Real World
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Next Steps: Month-Long Learning
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Takeaways

* Embodied intelligence is the ability to deal with novelty, failure, and
uncertainty.

* Interaction gives an agent the opportunity to learn about themselves
and the environment.

e Get out of the lab!



Thank youl!
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