World Modeling Challenge

Open PriveLab

About us

ЧX

Humanoid robot company, founded in 2015 Headquartered in Palo Alto, CA ~300 employees (Al team is 34 people)

Robotics Scaling Issues

More params is not always better

Fig. 5: Zero-Shot Evaluation. Out-of-the-box, Octo can control multiple robots in environments from the pretraining data. When using natural language to specify tasks, Octo outperforms RT-1-X [67], the current best openly available generalist robot policy across three different robot embodiments and setups. Octo also performs similarly to RT-2-X [103] on the tested WidowX and RT-1 Robot tasks.¹

Octo 93M vs. 55B (Octo Team et al. 2024)

More data is not always better

Fig. 8: Does DROID Improve Policy Performance and Robustness? We find that across all our evaluation tasks, co-training with DROID significantly improves both in distribution and OOD performance over both no co-training and co-training with the Open-X dataset. We compare success rate averaged across all tasks with standard error, and find DROID outperforms the next best method by 22% absolute success rate in-distribution and by 17% out of distribution.

> DROID dataset (Khazatsky et al. 2024)

Why predictable scaling is important?

- Generative Models lead the rest of ML: Robotics models lags behind generative modeling tech (LLMs, Images, Video) by ~3-5 years. Let's catch up!
- **ML Scaling is Expensive**. If we are to make a big investment in data collection & compute, we need predictable ways to match \$ spend with capability increase. ChatGPT for Robotics can only happen once the Scaling Laws for Robotics happens.

Evaluation

- In order to establish "scaling laws", reliable and consistent evaluation is critical
- In constantly evolving environments such as homes, previously valid experimental results quickly become outdated due to shifts in conditions

Х۲

1X World Model Challenge

compression

sampling

Level 1: Compression Challenge

- Scaling up learning in NLP + Vision has been achieved by optimizing a simple token-prediction loss to model all the tokens jointly, let's do the same for robotics
 - Lower loss indicates a better understanding of the data
- Given previous frames, predict next frame's logits, scored on cross entropy loss on a held-out test set

Goal: Minimize loss

Level 2: Sampling Challenge

- Given previous frames, sample next frame, scored against PSNR
- Future predictions should be coherent and plausible continuations of the video
- Admits broader set of solutions than the compression challenge (e.g. latent diffusion)

Goal: Generate realistic future frames

Overall Winner: Team Duke

Compression Challenge

	rank	id	ce
	1	Duke	7.4976
	2	a27sridh	7.9869
	3	WaterlooVipLab	7.9869
	4	Shortnapse	8.2723
	5	Be off soon	11.0881
	6	jmonas	11.5883
	7	USTC	11.5948
	8	Izzzzm	11.5952
	9	jhonQ	11.7778

Sampling Challenge

rank	id	psnr
1	Duke	21.5578
2	Micheal	18.5083
3	vjango	18.4823
4	WaterlooVipLab	18.0394
5	Jason	17.1983
6	jmy	17.1051
7	Shortnapse	17.0652
8	JJanGGoo	15.5284
9	plumwine	15.2858
10	a27sridh	11.954