EMBODIED INTELLIGENCE FOR AUTONOMOUS SYSTEMS ON THE HORIZON

ETA: Efficiency through Thinking Ahead A Dual Approach to Self-Driving with Large Models

with Shadi Hamdan, Chonghao Sima, Zetong Yang, and Hongyang Li

Large models are everywhere!

GT Feedback

Given the predicted future locations of ego vehicle, the following instances would occur:

Large deviation with planned route at 1.25 seconds in the future, with an error of 0.72 meters. Large deviation with planned route at 2.0 seconds in the future, with an error of 0.57 meters. Large deviation with expert route at 2.25 seconds in the future, with an error of 0.80 meters. Large deviation with expert route at 2.5 seconds in the future, with an error of 1.20 meters.

Predicted Feedback

Given the predicted future locations of ego vehicle, the following instances would occur:

Large deviation with planned route at 1.5 seconds in the future, with an error of 0.58 meters. Large deviation with planned route at 1.75 seconds in the future, with an error of 0.54 meters. Large deviation with expert route at 1.75 seconds in the future, with an error of 0.54 meters. Large deviation with expert route at 2.0 seconds in the future, with an error of 1.75 meters. Large deviation with expert route at 2.5 seconds in the future, with an error of 0.54 meters.

LLM/

MLLM

...but they are too slow.

LLM/

MLLM

How to use large models efficiently for self-driving?

Take CARLA Leaderboard-v2 winner:

LLM4AD/CarLLaVA

Action Mask Better aligning actions with observations

PathWaypoints

Action Mask Better aligning actions with observations

Patches with path/waypoint

-
(ms
$\widehat{\mathbf{O}}$
Č
atency
at

-
(ms
$\widehat{\mathbf{O}}$
Č
atency
at

What about different large models?

 Smaller: faster but worse performance

Driving Score

Bigger: slower and not better

What about different large models?

Smaller: faster but worse performance

Bigger: slower and not better

- Underfitting?
- Upperbounded by expert?

	80	
(1)	75	-
Driving Score	70	-
	65	-
	60	

Dual approach in driving

Dual approach

Typical Dual Paradigm

Efficiency through Thinking Ahead

Dual approach

Typical Dual Paradigm

Efficiency through Thinking Ahead

ETA: Async model $I_{t-\Delta}$

ETA: Async model

ETA: Async model

ETA: Async model

-
(ms
$\widehat{\mathbf{O}}$
Č
atency
at

Specific skills Async \approx Base in: Overtaking Emergency braking • Give way

Large gaps in: Traffic sign handling Merging

Figuring out how to use larger vision encoders Trying different experts, i.e. PDMLite Improving run-time further

- Improving forecasting

What is missing?

EMBODIED INTELLIGENCE FOR AUTONOMOUS SYSTEMS ON THE HORIZON

RELACS: Reward Learning for Autonomous Driving

using Counterfactuals

with Eray Çakar, Shadi Hamdan, Jiazhi Yang, Tianyu Li, Caojun Wang, and Hongyang Li

Increasing importance of planning

Hand-designed rewards Implicit Affordances, ROACH Ground truth measurements

• • •

 $w_1 * \mathcal{L}_{\text{position}} + w_2 * \mathcal{L}_{\text{goal}} +$ $w_3 * \mathcal{L}_{\text{rules}} + w_4 * \mathcal{L}_{\text{collision}} +$ $w_5 * \mathcal{L}_{comfort} + \cdots$

Hand-designed rewards Implicit Affordances, ROACH Ground truth measurements Reward engir What to consider? How to weight?

. . .

$\psi_{5} + w_{2} * \mathcal{L}_{\text{goal}} + w_{4} * \mathcal{L}_{\text{collision}} + w_{5} * \mathcal{L}_{\text{comfort}} + \cdots$

ngineering

Reward learning

Potential to scale to real-world Without reward engineering

Likelihood-based rewards

VIPER; 2023

Likelihood-based rewards

Vista; 2024

Crash

Likelihood-based:

Crash

High Uncertainty

Likelihood-based:

Likelihood-based: 🗸

A dedicated reward model, independent of future prediction.

Crash

High Uncertainty

Likelihood-based: Our method:

How to learn what should be low-reward?

How to learn what should be low-reward?

How to learn what should be low-reward?

Reward learning from counterfactuals

Reward specification

Reward specification

DrivingScore = RouteCompletion × InfractionPenalty

Infraction (I)	Coeff. (c)
Collision w/ pedestrians	0.50
Collision w/ vehicles	0.60
Collision w/ static	0.65
Running a red light	0.70
Running a stop sign	0.80

Reward specification

Infraction Type

Collision w/ pedestrians

Collision w/ vehicles

Collision w/ static

Running a red light

Running a stop sign

Correlation 1

YouTube CarCrash

YouTube CarCrash

Why does it generalize?

Why does it generalize?

NAVSIM: Ego progress

NAVSIM: Ego progress

Rendered slower

Real

Rendered faster

NAVSIM: Ego progress

NAVSIM: Route deviation

Real

Rendered Off-Route

NAVSIM: Route deviation

Remaining problems and future work

Imbalance in crash types • Active data collection methods Infractions are temporally sparse. Infraction localization Real-time closed-loop planners

Data augmentation for synthetic infraction generation

unterfactual

Thanks!

