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Large models are everywhere!
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Human High-level Instruction: ...If special vehicles like police
or ambulance are behind, yield and allow them to pass first...
Assistant: RIGHT CHANGE, KEEP

Human Instruction: Explain why you make this decision.
Assistant: I’ll make a right lane change, because there is an
ambulance behind.
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Human High-level Instruction: ...Traffic light indications: a) Red:
vehicles may proceed; b) Yellow: ...

Assistant: FOLLOW LANE, ACCELERATE

Human Instruction: Explain why you make this decision.
Assistant: 1’1l accelerate since the traffic signal is red.
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Deviation with expert trajectory.| | Initial Waypoint Pred.

i Corrected Waypoint Pred.
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the predicted future locations of ego vehicle, the following instances would occur:

deviation with planned route at 1.25 seconds in the future, with an error of 0.72 meters.
deviation with planned route at 2.0 seconds in the future, with an error of 0.57 meters.
deviation with expert route at 2.25 seconds in the future, with an error of 0.80 meters.
deviation with expert route at 2.5 seconds in the future, with an error of 1.20 meters.

Given
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Predicted Feedback

the predicted future locations of ego vehicle, the following instances would occur:

deviation with planned route at 1.5 seconds in the future, with an error of 0.58 meters.
deviation with planned route at 1.75 seconds in the future, with an error of 0.54 meters.
deviation with expert route at 1.75 seconds in the future, with an error of 0.54 meters.
deviation with expert route at 2.0 seconds in the future, with an error of 1.75 meters.
deviation with expert route at 2.5 seconds in the future, with an error of 0.54 meters.
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.but they are too slow.

Q: There is one construction
vehicle, many barriers, many
pedestrians, two traffic cones,
and many cars to the front of the
ego car.

Large Vision Language Model
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Sequence of Images

[:ﬁ' <SYSTEM> Describe the
driving conditions.

&) <DRIVLEVLM>

Weather: cloudy.

Road type: suburban.

Time: Daytime.

Lane condition: right lane
impassable, left lane passable.

Critical objects: police car at

x1, yl), (x2,y2)]...... i is: constant d. . ; : . W\‘ : | {
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Trajectory »
Matching Prompting Refinement
DriveVLM-Dual . In this scenario, what are 'Y:Brake gently to a stop,
L safe actions to take for the — L turn right, turn left.
__ego vehicle? (&) —~
3D Perception Motion Prediction Trajectory Planning = 4 &): The ego vehicle is
N o , L): Predict the behavior of the g going straight. The ego
Traditional Pipeline High Frequency | ego vehicle.@ © © ) | vehicle is driving slowly.
( N\ ( -
w . Predict the motion of the LY:{0.1, 2.5), (0.2, 5.2),
. o .—)
| g0 vehicle.(& ] ..., (0.5, 8.4)}

@ <SYSTEM> Matched objects:
police car, history trajectory:xxx.
Unmatched objects: ...

Describe the critical objects and their
influence on the ego-vehicle.

&) <DRIVLEVLM>
Characteristics: Parking on the right
side of the road.

Influence: Blocking the right lane and

indicating a potential for accidents or
other incidents.

-
[53 <SYSTEM> Ego state and
historical trajectory are [...],
determine meta-actions, decisions,
and plan future waypoints.

&) <DRIVLEVLM>
Meta-actions: [slow down, shift
slightly to the right, go straight at a
constant speed].

Decision: Slow down and shift
slightly to the right to overtake the
barrier and then go straight at a
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) : What is the status of the
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—low to use large moaels

efficiently for selt-driving!
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Action Mask m P
Better aligning actions with observations ® Waypoints




Action Mask
Better aligning actions with observations PREE/PEIE




Results on BenchZ2Drive
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Results on BenchZ2Drive
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Results on BenchZ2Drive
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Dual approach in embodied systems
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Dual approach in ariving
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o Critical object identify
o Mulfi-round conversation
o SFT on a small datfaset
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Dual approach

Typical Dual Paradigm Efficiency through Thinking Ahead
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c [A: Async model
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c [A: Async model

requires large model inference
at current time step (expensive)

but only at train time




Results on BenchZ2Drive
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How does 1t work!
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How does 1t work!
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How does 1t work!




How does 1t work!




How does 1t work!




Specific skills

Async =~ Base in:
® Overtaking
® -mergency braking

® Glve way

Large gaps in:
® [raffic sign handling
® Merging

—— Base Model
———  Async Model
— UniAD-Base
— VVAD

— TCP-traj
— ThinkTwice
—— DriveTransformer
—— DriveAdapter

Mean Abilit
59.217 ¢

Driving Score







VWhat Is missing?

o Improving forecasting
© Figuring out how to use larger vision encoders
o Trying difterent experts, 1.e. PDMLite

< Improving run-time further




EMBODIED INTELLIGENCE FOR AUTONOMOUS SYSTEMS ON THE HORIZON

RELACS:

Reward Learning for Autonomous Driving
using Counterfactuals

with Eray Cakar, Shadi Hamdan, Jiazhi Yang, Tianyu Li, Caojun Wang, and Hongyang Li




Increasing Importance of planning
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Max
speed

Desired speed

---------------------------------

....................

Stop at
red light

Pass green Stop behind
light obstacle
>
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Hand-designed rewards

Implicit Affordances, ROACH

Ground truth measurements
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Reward engineering

What to consider?

How to weight!




Reward learning

Potential to scale to real-world

Without reward engineering
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EXxpert

Uncertainty
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Sub-tasks DS SV

A dedicated
reward model,

independent of
future prediction.
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How to learn
what should be
low-reward!?

"Go straiggbt';

"Go right”

"Go left"

No brake
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How to learn
what should be
low-reward!?

Expert

"Go straight"

"Go right"

"Go left"

No brake




Reward learning from counterfactuals
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Reward specification

DrivingScore =|RouteCompletion|X InfractionPenalty

* Cosmos- /

Tokenizer

Transformer

RC : % of the route completed

x map or goal dependency

DistanceCovered = RC X Routel en

Distance
Covered . Subtasks
Infraction State

Penalty Value




Reward specification

DrivingScore = RouteCompletion X|InfractionPenalty

\?ﬁk Cos- /
Tokenizer Infraction (l) Coeff. (c)
Collision w/ pedestrians 0.50
P — HC#I] Collision w/ vehidles 0,60
J : Collision w/ static . 0.65
Distance Running a red light . 0.70

C d .
overe Infraction | State Subtasks Running a stop sign 0.80
Penalty | Value




Reward specification

Ground truth
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Reward specification
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Validating on CARLA
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Validating on CARLA
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Validating on CARLA
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Does It generalize to nuScenes!
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You lube CarCrash

Crash Near Crash | Expert




You lube CarCrash
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You lube CarCrash
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Why does 1t generalize!
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Why does 1t generalize!

o Cosmos DINOWV2
CARLA nuScenes You Tube CarCrash
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NAVSIM: Ego progress
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NAVSIM: Ego progress
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NAVSIM: Ego progress

Distance Covered

Faster




NAVSIM: Route deviation

Rendered Off-Route




NAVSIM: Route deviation

State Value 1

Rendered Off-Route




Remalining problems and future work

© Imbalance In crash types
» Data augmentation for synthetic infraction generation
* Active data collection methods

o Infractions are temporally sparse.
* Infraction localization

o Real-time closed-loop planners




| hanks!




