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Teleoperation or Learning from Videos Seems Really Promising

 Basic recipe: behavior cloning from labeled actions
e Action space: joint angle or end-effector pose
* Low-level control is simple and accurate (PD or IK + PD)

Physical Intelligence 0.5 (VLA) Tesla Optimus
Learning from teleoperation data Learning from mixed teleoperation & human video data
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Teleoperation or Learning from Videos Seems Really Promising

Humanoid Policy ¥~ Human Policy

(human data and humanoid data co-training)
https://human-as-robot.github.io/



https://human-as-robot.github.io/

... How About Tasks Involving Whole-Body Agility?

1 For those tasks, impossible or extremely hard to:
* Teleoperate (if you can, you already solve the problem)
* Get labeled action (imagine ask MJ: “I wanna learn fadeaway jumper. Could you tell
me your joint trajectories?”)
* Use simple low-level controllers for tracking

Robot Joint Control
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... How About Tasks Involving Whole-Body Agility?

(J Most dexterity and agility (especially whole-body) come from system 1
(I suspect) Most human teleoperation involves little system 1

J How to learn system 1 agility and dexterity?
* We need a “model/simulator” and sim2real learning!

SYSTEM 1 SYSTEM 2

Intuition & instinct Rational thinking

Takes effort
Slow

Unconscious
Fast
Associative Logical
Automatic pilot Lazy
Indecisive

Source: Daniel Kahneman



Sim2Real 1.0: Simplified Model + Online Reasoning

[ The control community has been doing sim2real for many decades!
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1 What is fascinating (but also foolish): no “pretraining”, 100% rely on very fast (>100Hz)
online reasoning



Sim2Real 1.5: Full-Order Simulators + Online Reasoning

1 We can do full-order MPC now using advanced sampling-
based methods (e.g., DIAL-MPC)
d However, slow and require state estimation

Theorem (informal) [Pan et al., NeurlPS’24][Xue et al., ICRA’25]
AsN — oo, Ut = U + X - Vlogps (U) where py = pg * N'(0,X)
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Physical-based Simulators Massively parallel [Xue* and Pan* et al., ICRA’25]
sampling-based optimization Best Paper Award Finalist
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Sim2Real 2.0: Sim2Real Reinforcement Learning (RL)

O Massively parallel policy gradient method (PPO) is such a strong policy optimizer
L No need for state estimation! Observation o; is all you need
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Massively Parallel Policy Optimization Real-world
Training Environments using RL Deployment

Physics-based Simulators



H20: Human-to-Humanoid Whole-Body Control

1 Goal: Build an interface between whole-body human and humanoid motions
 Such an interface supports human whole-body teleoperation, imitation learning, integrating with

VLMs, ...

J Key idea of H20: Sim2Real 2.0 from large-scale retargeted human motion dataset
[Teleoperation]

.
Y 4 \

[Learning Human-to-Humanoid Real-Time Whole-Body Teleoperation, He* & Luo™* et al., IROS’24 (Oral)] 9
[OmniH20: Universal and Dexterous Human-to-Humanoid Whole-Body Teleoperation and Learning, He* & Luo* & He*, et al., CoRL'24]




H20: Human-to-Humanoid Whole-Body Control

Step 1: Create a large-scale humanoid-feasible motion dataset

d >10K human motions from AMASS (ICCV’19)!

 Shape fitting using inverse kinematics

1 Key: physics-based retargeting
e lLearna to track all
motions using RL
* This policy knows all robot states
* Generate humanoid-feasible motions and
filter out impossible motions

Motion Dataset (Raw)
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H20: Human-to-Humanoid Whole-Body Control
Step 2: Sim2Real RL training

1 Distill the to a deployable student policy in sim
 The student policy only knows observations available in real
e Key points as the motion goal (one head + two hands) for student policy
 Domain randomization (DR) for robustness

(b) Sim-to-Real Training
\ <

PD Controller (200r2)

@ Simulation

Privileged Proprioception p
361 dim J i PriVileged } privileged
:

Y

Imitation Policy [— ¢
Phase 1

\

Privileged Motion Goal

7rprivileged 50Hz

L .
: Reinforcement
552 dim A
& J L e Learnmf
( . . \ - . . ) Phase l2
Imitation Goal Sim-to-Real Proprioception Supervised

Y Learning

=\ OmniH20 50HzZ

p

{ 26 history step *63 dim=1638 dim Sim-to-Real

. i . b Imitation Policy | — 4;
Sim-to-Real Motion Goal 0

27 dim

11



H20: Human-to-Humanoid Whole-Body Control

d The H20 pipeline is highly extendable
e Step 1: motion retargeting & learning a “tracking” policy in sim
e Step 2:learn a “student” policy that can be deployed in real

( Motion source in step 1 is flexible: MoCap (AMASS), videos, ...
[ The student policy in step 2 is very flexible: Track different key points, vision-based, ...

==\ | AN 4 iw e
One teacher -> multiple students VideoMimic from Berkeley .
HOVER from NVIDIA [He* and Xiao™ et al., ICRA’25] [Allshire*, Choi*, Zhang®*, McAllister*, et al.]
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WoCoCo: Learning Whole-Body Control with Sequential Contacts

 Goal: learning long-horizon whole-body skills without any motion priors
] Key idea: decompose a long-horizon skill into a sequence of contact goals and task goals

[WoCoCo: Learning Whole-Body Humanoid Control with Sequential Contacts, Zhang* & Xiao™ et al., CoRL'24 (Oral)]



What is Wrong with Sim2Real 2.07
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1 Sim2Real gap is large, unintuitive, and hard to quantify

1 Tedious reward / curriculum / domain randomization tuning

(1 Hard to encode prior physics, poor sample complexity, unsafe

[ No online reasoning: policies learned from sim are frozen in test time
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From Sim2Real 2.0 to 3.0: Real2Sim and Structured RL

V'

Perf bad policy
errormance ® 500d policy Challenge 2: super complex landscape and RL
| *

/ could easily “hack” it

«——_  Challenge 1: large sim2real gap (sim performance
doesn’t transfer to real)

in real
>

Policy parameter

J Real2sim: reduce the sim2real gap
J Structured RL: add priors and inductive bias to have a smoother landscape



Sim2Real 3.0: Real2Sim

 learning “residuals” to bridge the gap between real and sim

Real2Sim
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Residual Dynamics Learning for Other Robotic Systems

[ Neural-Control Family
Key idea: Collect data in real and use a DNN f to approximate /

M(q@)Gg+C(q,q9)q+g(q) =u+/(q,qat)

Then design a nonlinear controller u = m(q, g, /)
Often need to regularize f for control-theoretic guarantees

Neural-Lander
[ICRA’19]

#
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Our method can also generalize to the
challenging time-varying wind condition. Front view

Neural-Fly: [ is time-variant
[NeurlPS’21][Science Robotics’22]

— unknown dynamics

Aerial Manipulations
[Guo™* and He* et al., RAL'24]
[He* and Guo™ et al., RSS'25]



Residual Dynamics Learning for Humanoids?

[ Directly learning dynamics may not be a good idea for humanoids:
. f needs to generalize well (requiring a lot of real-world data)
* Need to regularize f heavily to ensure [.;,,, + f still “makes sense”
. f will be exploited by RL

A learned f
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An Alternative Solution: Learning a Delta Action Model

d The ASAP framework: learn a delta action model to match sim and real
* Pretrain a policy 7 in sim, rollout in real: {x{,al, -, x7}
* Replay{af, -} insim: x;.;. Due to the sim2real gap, x;.; # x{.r
* Train a delta action model Aa(x, a,--+) in sim such that a; + Aa; yields x;.; = x{.;
* Rollout ™ + Aa in sim to fine-tune 7. Finally deploy 7 in real.

b i 3

AfterDeltaA

[ASAP: Aligning Simulation and Real-World Physics for Learning Agile Humanoid Whole-Body Skills, RSS’25]



Performance in Agile Whole-Body Control Tasks

1 Similar to the human-to-humanoid pipeline but each policy focuses on one motion

20
[ASAP: Aligning Simulation and Real-World Physics for Learning Agile Humanoid Whole-Body Skills, RSS’25]



More Detailed Analysis of ASAP

1 How to train Aa?
* Another RL problem — the objective is to get x;.; = x{.;

d Why it makes sense?
e 1w+ Aainsim = in real. Aa effectively aligns sim and real dynamics

d Why is it different from lterative Learning Control (ICL)?
« Theidea is very similar. ASAP is “deeper” and learns a closed-loop Aa

J Why don’t we call Aa a residual policy?
* Aa(x,a,--)is closed-loop, but shared by all tasks: 7, :-- T, share the same Aa

1 Example: in real, the motor is 80% as strong as sim: a” = 0.8m(x") but a® = m(x*)
* In this case, our algorithm will learn Aa(x,a) = —0.2a

[ASAP: Aligning Simulation and Real-World Physics for Learning Agile Humanoid Whole-Body Skills, RSS’25]



More

Detailed Analysis of ASAP

[ Quantitative results in sim2sim setting: Isaac Gym -> Isaac Sim

---------

Before
Delta Action
Finetuning

After

Delta Action
Finetuning

O Visualization of ||Aa|| for each DoF

Lower body has bigger gaps
Ankle pitch has the biggest gap
In real world, we only learned a 4-DoF Aa for ankle

A Shoulder roll shoulder yaw
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Statistics  0.015 :
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0.054 0.017
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[ASAP: Aligning Simulation and Real-World Physics for Learning Agile Humanoid Whole-Body Skills, RSS’25]
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Another Solution for Real2Sim: System ID

d System identification (ID) is the oldest real2sim!
L Challenging for humanoids: f.;,, (¢ ) is not differentiable or smooth

Parameter 8°
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Another Solution for Real2Sim: System ID

1 SPI-Active: sampling-based system ID + active exploration
 Use the policy that maximizes the Fisher Information to collect data
O https://lecar-lab.github.io/spi-active /

SPI-Active (ours) =
Velocity traking (no pose feedback)

,.f"‘.\.-" . 1

ﬂ

24
[Sampling-Based System Identification with Active Exploration for Legged Robot Sim2Real Learning, Sobanbabu* and He* et al., 2025]


https://lecar-lab.github.io/spi-active_/

Sim2Real 3.0: Structured RL + performance

1 Leverage humanoid structure to design better policy architecture
1 Goal: have a smoother RL optimization landscape

in sim

in real

Policy parameter
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FALCON: Dual-Agent RL for Force-Adaptive Loco-Manipulation

J Tasks: heavy-duty loco-manipulation

Baseline FALCON

[FALCON: Learning Force-Adaptive Humanoid Loco-Manipulation, Zhang et al., under review]



FALCON: Dual-Agent RL for Force-Adaptive Loco-Manipulation

J Tasks: heavy-duty loco-manipulation
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Baseline FALCON

[FALCON: Learning Force-Adaptive Humanoid Loco-Manipulation, Zhang et al., under review]



FALCON: Dual-Agent RL for Force-Adaptive Loco-Manipulation

J Key structure 1: dual-agent RL
* Two policies, two value functions (critics), two sets of rewards
e Jointly trained and both have whole-body proprioception input

Joint Angle Tracking

Joint Limits

: Less Jittery
Whole-Body Proprioception .
; Sp Tl'l Lower-Body Rewards
5 i t V% Velocity Tracking
t . ’ Height Tracking
N &;"* Waist Trackin
lm / \ N \ : g [ . :
Ut - It :
E Heuristic Gait
ang hroot aw(é : aé | ,
Lower -Body Agent Commands Lower-Body RL Agent <

Lower-Body Joint Targets

[FALCON: Learning Force- Adaptlve Humanoid Loco-Manipulation, Zhang et al., under review]



FALCON: Dual-Agent RL for Force-Adaptive Loco-Manipulation

J Key structure 2: adaptive and feasible 3D force curriculum on the end-effector
* Apply random external forces f ¢¢ on two end-effectors
* Make sure f°¢ is feasible with the motor torque limit

per

] 3 f . : Force Range w.r.t. q,"

t 4

Feasible 3D Force Curriculum
_Tlim = 79 + JgEfee < Tlim

Tlim Z 0, Tlin _ Tg 2 0

[FALCON: Learning Force-Adaptive Humanoid Loco-Manipulation, Zhang et al., under review]



Slow-Fast Two-Agent for “Hold My Beer”

J Slow-fast two-agent framework for humanoid end-effector stabilization
* Upper body: “fast” dynamics, high-precision corrections
 Lower body: “slow” dynamics, robust locomotion

Observation Policy EE-pos Tracking
EE Stabilization
@ EE command | FaSt

. el ) ) )
iy Base-vel command

\
Agent ]
High Freq Actions »

% Gait command

Slow

Low Freq Actions ) )

— Lower Body o 7 L
St Agent t t-2

Gait Tracking
Base-vel Tracking

[Hold My Beer: Learning Gentle Humanoid Locomotion and End-Effector Stabilization Control, Li et al., under review]



Zooming Out: Towards Sim2Real 4.0

 Offline + online could be powerful!

A
Online + RL +
offline optimal Sim2Real 4.0:
control |:> better model & better
=] RL algorithm & better
When i online reasoning
”learning” On m_e Sim2Real 1.0: || Sim2Real 1.5:
reasoning 1 using NMPC DIAL-MPC
happens
Offline Sim2Real 2.0: Sim2Real 3.0:
training using RL using RL++
Reduced- | Full | Sim + real2sim | Generative sim,
order model simulator world model, ...

“Sim” (model) fidelity/diversity



RL (full-order) + Online Optimal Control (Reduced-order)

O 7, outputs center of mass refs § f; Top Optimizes ground reaction force (GRF)

d Fully onboard & autonomous (depth camera for sensing)
)

/ T[RL(x) \ / TL'QP(X, T[RL)
4 min [l — v + 1 fllv m
subjectto: g = Af +g I

v
N v;‘ef
(‘ .fi,z =0
Ps+pr fmin = fi,z < fmax

\ 4

—ufiz S fig S bfexs —bfiz S fig: S Bfiz /

|
=
=
| m——
E—
—
———
——

y i |

i
|

-

S >
k: - N

b

[Agile Continuous Jumping in Discontinuou
[CAJun: Continuous Adaptive Jumping using a Learned Centroidal Controller, Yang et al., CoRL 23]



RL (full-order) + Online Optimal Control (Reduced-order)

: /‘,1

RAMBO: RL-augmented Model-based Optimal Control

for Whole-body Loco-manipulation

33
[RAMBO: RL-augmented Model-based Optimal Control for Whole-body Loco-manipulation, Cheng et al., under review]



Hierarchical RL and Safe Control Layer

. X s \X, 1
[Remforcgment]”RL( )I Safety Filter ] s( RL):? ; :
Learning J L J

airan He,\Chong Zh‘ng, WenliiXiao, Guan_(;i He, Changliu Liu, Guanya Shi

SRRy ) | e
- | Yy i ﬁf g g

* Fully onboard & autonomous
* Fast (upto 3.1m/s)
» Safe & robust

[Agile But Safe: Learning Collision-Free High-Speed Legged Locomotion, He* and Zhang* et al., RSS’24 (Outstanding Student Paper Finalist)]



Thank You!

All projects | presented are open-sourced:
https://lecar-lab.github.io/publications.html
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