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Abstract
Driving scene understanding task involves detecting

static elements such as lanes, traffic signs, and traffic lights,
and their relationships with each other. To facilitate the de-
velopment of comprehensive scene understanding solutions
using multiple camera views, a new dataset called Road
Genome (OpenLane-V2) has been released. This dataset
allows for the exploration of complex road connections and
situations where lane markings may be absent. Instead of
using traditional lane markings, the lanes in this dataset
are represented by centerlines, which offer a more suitable
representation of lanes and their connections. In this study,
we have introduced a new approach called TopoMask for
predicting centerlines in road topology. Unlike existing ap-
proaches in the literature that rely on keypoints or para-
metric methods, TopoMask utilizes an instance-mask based
formulation with a transformer-based architecture and, in
order to enrich the mask instances with flow information, a
direction label representation is proposed. TopoMask have
ranked 4th in the OpenLane-V2 Score (OLS) and ranked
2nd in the F1 score of centerline prediction in OpenLane
Topology Challenge 2023. In comparison to the current
state-of-the-art method, TopoNet, the proposed method has
achieved similar performance in Frechet-based lane detec-
tion and outperformed TopoNet in Chamfer-based lane de-
tection without utilizing its scene graph neural network.

1. Introduction
Accurate detection of stationary objects plays a vi-

tal role in downstream tasks like planning and control
in autonomous driving. Static elements on the road in-
clude ground objects, such as lanes, road lines, curbs,
and crosswalks as well as above-ground objects like traffic
lights, traffic signs, and poles. Currently, High-Definition
Maps (HDMaps) are utilized for the safe autonomous driv-
ing. These maps provide pre-computed static-object maps.
However, HDMaps are costly to extract and are typically
available for limited areas. They cannot capture recent
changes on the road, necessitating continuous maintenance.
Additionally, Global Navigation Satellite System (GNSS)
receiver on the vehicle can introduce localization errors.

These errors, in turn, can cause discrepancies between the
vehicle’s actual position and the information provided by
the HDMaps, potentially leading to inaccuracies and drifts
in the map-based guidance system.

Automatic HDMap extraction has gained significant at-
tention in recent years for two primary reasons, as high-
lighted by several studies [1, 7, 10, 13]. Firstly, it has a po-
tential to eliminate the reliance on HDMaps for autonomous
driving. Secondly, it can reduce the cost of extraction and
continuous maintenance of HDMaps, minimizing the re-
quired human effort. The introduction of Road Genome
dataset [22], which introduces the centerline concept to rep-
resent lanes, is an important milestone with regards to these
aspects. Centerlines provide a more natural representa-
tion of lanes and bring a number of advantages over lane
markings. Firstly, centerlines eliminate the need for post-
processing to match lane dividers with their corresponding
counterparts, simplifying the lane detection process. Sec-
ondly, they provide a more intuitive representation of the
direction of traffic flow. Thirdly, centerlines capture the re-
lationships between lanes more effectively, enhancing the
understanding of lane connections. An additional benefit
of centerlines is their ability to address situations where
lane markings are absent, such as in road intersections. In
this dataset, association between lanes and traffic elements
(taffic signs and lights) are also included into the prob-
lem definition which is significant for complete autonomous
driving experience.

In this study, we have introduced a novel approach
called TopoMask for representing centerlines, departing
from the key-point based and parametric methods such as
bezier and polynomial approaches. TopoMask leverages a
transformer-based architecture combined with an instance-
mask-based representation. A similar segmentation-based
approach is employed in HDMapNet [7]. However,
HDMapNet relies on semantic segmentation and requires
additional instance embeddings and direction outputs, lead-
ing to a more complex post-processing step to merge the
outputs. In contrast, our proposed formulation solely re-
lies on the instance mask output with a novel direction label
representation that denotes the flow of the centerlines: up,
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down, left and right. This simplifies the overall process and
avoids the need for extensive post-processing.

To the best of our knowledge, TopoMask achieves the
state-of-the-art performance in OpenLane-V2 dataset com-
paring with the existing methods in the literature. Remark-
ably, our approach achieves comparable Frechet-based cen-
terline detection performance to TopoNet with a score of
22.8, even without incorporating a relation improver block
such as TopoNet’s Scene Graph Neural Network. In terms
of Chamfer-based centerline detection performance, Topo-
Mask significantly outperforms TopoNet with a score of
25.3.

In the OpenLane Topology Challenge 2023, our pro-
posed architecture attains the 4th position with a OLS score
of 39.2 and its F1-score of 45.9 is the 2nd highest score for
centerline prediction.

2. Related Work
Studies in the field of lane detection can be classified into

four main branches: perspective methods, 3D lane divider
based methods, multi-camera BEV methods, and centerline
based methods.

Perspective Methods: These methods focus on detecting
lane dividers from the perspective view, followed by pro-
jecting them onto the ground using a homography matrix
under the assumption of a flat surface. Although road di-
viders are different instances, semantic approaches are well-
suited for this task due to the constant number of lane di-
vider instances (side-left, ego-left, ego-right and side-right).
SCNN [16] introduced a special module that applies se-
quential processes to the rows and columns of the fea-
ture map. The study in [18] aims to improve the infer-
ence speed, and converts the formulation from pixel-based
to grid-based and proposes row-based anchor formulation.
LaneATT [20] developed an anchor concept specifically for
lanes (road lines), drawing inspiration from object detec-
tion studies. The emergence of the CurveLanes dataset [25]
led to the adoption of instance-segmentation-based meth-
ods. CondLaneNet [11] introduced lane specific method-
ologies such as offset prediction and row-wise formulation.
Some approaches such as Polynomial Order Structures [21]
and Bezier Curve Approaches [5] used polynomial or bezier
curve representations to reduce post-processing efforts and
improve curve learning.

3D Lane Divider methods: Recent advancements in lane
detection have shifted focus towards directly predicting the
3D locations of lane instances, eliminating the need for
post-processing on perspective outputs. This shift gained
momentum with the introduction of 3D lane datasets such
as such as Once-3DLanes [27], OpenLane [3] and Apollo
3D Synthetic Lane dataset [6].

Persformer [3] utilizes a deformable attention-based de-
coder that utilizes reference points obtained from Inverse

Projection Mapping (IPM). It adapts the 2D anchor con-
cept to 3D lane points. In the BEV-LaneDet method [23],
a grid-based approach is employed, where positive points
belonging to the same instance are unified using an embed-
ding concept with a triplet-based loss. It also incorporates
a virtual camera concept to unify different extrinsics from
multiple camera positions for the View Relation Module
(VRM) [15]. PETRV2 [14] extends its sparse query design
for lane detection. M2̂-3DLaneNet explores the fusion of
lidar and camera sensors and shows that these sensors are
complementary in the 3D lane detection task.

Multi-Camera BEV methods: HDMapNet [7], one of
the first studies in this branch, aim to detect lane dividers,
road dividers and pedestrian crossings by utilizing three dif-
ferent heads: semantic segmentation, instance embedding
and direction head. However, the use of three heads neces-
sitates substantial post processing to convert them into poly-
line or polygon output. VectorMapNet [13] adopts a two-
stage coarse-to-fine approach. In the first stage, sparse an-
chor keypoints are detected. In the second stage, dense key-
points are detected by utilizing the outputs of the first stage
in an autoregressive manner. Instead of following an autore-
gressive approach, MapTR [10] predicts the points on the
polyline or polygon directly with a permutation-invariant
Hungarian matcher. InstaGraM [19] models this problem
as a graph and models vertices and edges as heatmap and
distance transform, respectively in 8 × 8 patches. From
each patch, an embedding is extracted by considering the
vertex positions and local directional information obtained
from the distance transform. Subsequently, a graph neu-
ral network structure is constructed using an attention-based
method. The Sinkhorn algorithm is employed to iteratively
normalize the exponential scores between the vertices.

Centerline Concept: STSU [1] is one of the earlier stud-
ies that predicts the centerlines instead of lane markings.
An extention of this study introduces the concept of mini-
mal cycles, which aims to reduce the area between two in-
tersections [2]. CenterLineDet [26] focuses on predicting
centerlines from multiple cameras by leveraging temporal
information. Additionally, it explores the impact of camera-
LiDAR sensor fusion on centerline prediction. LaneGAP
[9] considers centerlines as path-wise rather than piece-wise
and instead of directly predicting centerline portions and
their connections, the paths can be obtained by preprocess-
ing the centerline graph. Subsequently, the model predicts
the paths and converts them back into the piece-wise graph
structure. TopoNet [8] is a pioneering study that proposes
an architecture which is specifically designed for the Road
Genome project [22]. It introduces a specific relation model
that creates a graph neural network connecting centerlines
and traffic elements. The predictions of centerlines are gen-
erated at the end of the topology network, which enhances
centerline prediction accuracy. The incorporation of a dedi-
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Figure 1. Overview of the TopoMask architecture, featuring two
main branches: one for detecting traffic elements and the other
for detecting centerlines. The Mask2Former architecture treats the
BEV feature as 2D image features, eliminating the need for addi-
tional structure. Queries from both transformer architectures are
treated as embeddings and used in the relationship blocks.

cated traffic element embedding also improves the detection
of centerline elements.

3. Methodology
The general architecture of the TopoMask is shown in

Figure 1. In this formulation, both traffic element and cen-
terline detection branches use transformer-based architec-
tures. The centerline detection part of the TopoMask ar-
chitecture relies on the instance-mask formulation. In this
approach, each centerline instance is represented as a mask
instance. By applying appropriate post-processing to each
mask instance, it becomes possible to extract a point set for
each proposal.

However, the point set extracted from the mask instances
does not have a specific order. In the problem definition
of road topology, the flow information of each centerline is
also crucial. In order to enrich the point sets with flow infor-
mation, we propose a direction label representation (Figure
2) in TopoMask. As depicted in the leftmost image of the
figure which represents the semantics of the direction infor-
mation, there are four directions: up, down, left and right.
The labels are assigned according to the dominant mono-
tonicity between the two axes of the ground truth point set.
In the post-processing stage, according to the predicted di-
rection label representation, point sets are ordered with re-
spect to one axis (x axis in vehicle coordinate system) for
up and down direction labels, and ordered with respect to
the other axis for left and right direction labels (y axis in
vehicle coordinate system).

4. Experiments
Dataset and Metrics: Argoverse 2 (AV2) [24] dataset in-
cludes 7 cameras from 6 different cities and Subset-A re-
lease of the OpenLane-V2 dataset [22] (also known as Road
Genome) used in this study which is built on top of the AV2.

Figure 2. Label representation of TopoMask: The leftmost image
displays the semantic information of directions (up, down, left,
and right) represented by distinct colors. The subsequent images
depict the instances for each direction, showcasing the labels for
up, down, left, and right, respectively.

Subset-A contains 22480 training, 4808 validation and 4816
test samples. For centerline and traffic element evaluation,
the area considered is within +50 and -50 meters in the for-
ward direction (x direction in the vehicle coordinate system)
and +25 and -25 meters in the side direction (y direction in
the vehicle coordinate system).

Both centerline detection and traffic element recognition
utilize mAP (mean Average Precision) metrics for evalua-
tion. True positive samples are determined using different
distance measures depending on the task. For centerlines,
the Frechet distance with thresholds of 1, 2, and 3 meters
and Chamfer distance with 0.5, 1, and 1.5 meters are used.
The Frechet distance takes into account both the distance
and direction information between the predicted and ground
truth centerlines while Chamfer distance ignores the direc-
tion information. For traffic elements, the Intersection over
Union (IoU) metric is employed with a threshold of 0.75.

In addition to these metrics, a specific mAP metric has
been proposed to evaluate topology reasoning in the graph
domain. This metric takes into account the connectivity and
relationships between centerlines and traffic elements. Note
that, in order to assume connectivity (edge) as true positive,
both vertices should be detected correctly regarding Frechet
distance and IoU.

F1-score is also calculated, but it is not included in the
OLS metric. The F1-score is commonly used in the evalua-
tion of predicted 3D lane dividers, such as in Gen-LaneNet
[6]. According to this metric, if 75% of the predicted points
are within 1.5 meters error compared to the ground truth
points of a corresponding instance, the sample is considered
correct.

OLS =
1

4

[
DETl + DETt + f(TOPll) + f(TOPlt)

]
(1)

The evaluation system utilizes OpenLane-V2 Score
(OLS) as the overall metric, which is calculated as the av-
erage of multiple task metrics (Eq. 1): centerline prediction
with Frechet-based mAP (DETl), traffic element prediction
with IOU based mAP (DETt), and topology relations be-
tween centerlines and traffic elements (TOPll and TOPlt).
However, OLS does not take F1 score and Chamfer distance
based mAP into account.
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Method DETl↑ DETl,chamfer↑ TOPll↑ DETt↑ TOPlt↑ OLS↑
TopoNet [8] 22.1 20.2 2.7 59.1 14.9 34.0
TopoMask 22.1 23.8 5.8 58.2 15.5 36.0

Table 1. Comparison of TopoMask and TopoNet architectures.
Both architectures use ResNet-50 model as the backbone and both
were trained for 24 epochs. The key distinction is that TopoMask
does not utilize a shared feature extractor.

Config Type BEV Backbone 2D Backbone # Epochs

Config1 ResNet50 ResNet50 25
Config2 RegNetY-800mf ResNet50 40
Config3 RegNetY-800mf ConvNextBase (OpenAi) 40
Config3* RegNetY-800mf ConvNextBase (OpenAi) 40 + 30 trainval

Table 2. Configs that are utilized in the ablations of Table 3.

Experimental Details: The study utilizes DAB-DETR
[12] for the 2D object detection and LSS [17] for the BEV
feature map creation with 200 × 104 BEV resolution. On
top of the BEV feature, Mask2Former architecture [4] is
utilized as instance mask prediction structure by preserving
its original settings. For the relationship part, Sinkhorn it-
erations has been utilized as in InstaGraM study [19]. To
establish a directed graph for centerline relationships, the
start and end points of the predictions are combined with
the centerline embeddings in the form of sinusoidal posi-
tional encodings. The image resolution is 640×896 in BEV
branch and a batch size of 16 is utilized. AdamW with a
learning rate of 0.0003 is utilized as the optimizer with 0.1
multiplication on backbone gradients. As a post process-
ing, expectation based location estimation is implemented
as row-wise formulation for the up/down directions, and
column-wise formulation for the left/right directions sim-
ilar to [18]. Then, second order polynomial fit is applied on
top of the selected points and 11 points are sampled. During
the mask prediction, bezier curves are also predicted with 5
control points in which start and end points are fixed. Dur-
ing bezier prediction, the 3D coordinates of centerlines are
not normalized.

Experimental Results and Ablation Studies: We com-
paratively evaluate TopoMask with the current SOTA archi-
tecture, TopoNet, and report the results in Table 1. It should
be noted that TopoMask does not have a relation improver
method that enriches centerline embeddings with traffic el-
ement embeddings and implements second stage centerline
prediction with these enriched embeddings. Despite this
fact, TopoMask obtains on-par Frechet-based centerline de-
tection performance and compares favorably in terms of
Chamfer-based centerline detection and F1-scores. The re-
sults indicate that there is potential for improvement in the
direction information of the TopoMask architecture. Addi-
tionally, the Frechet distance metric is negatively affected
by sparse, highly erroneous detections among the 11-point
predictions, particularly at intersections.

TopoMask contains both mask prediction and paramet-
ric prediction in Bezier format. Therefore, potential fusion

Method DETl↑ DETl,chamfer↑ TOPll↑ TOPlt↑ OLS↑ F-score↑
Config1 Bezier 14.4 14.7 4.2 11.4 31.7 36.1
Config1 Mask 22.1 23.8 5.8 15.5 36.0 45.2
Config1 Fusion 21.2 23.2 5.5 14.7 35.4 43.1
Config2 Bezier 17.7 20.1 4.9 12.1 33.1 40.1
Config2 Mask 22.8 25.3 6.0 15.0 35.9 47.3
Config2 Fusion 22.7 25.1 6.0 15.1 36.0 45.9
Config3 Bezier 19.4 20.9 5.2 13.2 35.0 41.3
Config3 Mask 22.8 24.0 6.0 15.8 37.1 47.5
Config3 Fusion 22.6 23.8 6.1 15.9 37.1 46.4
Config3* Mask 21.6 NA 5.8 15.6 38.9 46.1
Config3* Fusion 22.1 NA 6.0 15.7 39.2 45.9

Table 3. Comparison of bezier parametric structure, mask struc-
ture and fusion strategies. Configurations vary in terms of back-
bones and training epochs and shown in Table 2. In some configu-
rations, fusion options might increase the performance. * denotes
the test results from the challenge. Test servers does not yield
chamfer-based centerline detection performance for the test set,
indicated as NA.

strategies are also explored. Table 3 shows the compari-
son of instance-mask and bezier based methodologies and
their possible fusion. For the fusion, it is observed that ac-
cepting prediction for left/right direction from bezier pre-
dictions and up/down directions from mask predictions for
some configurations is helpful. According to the results,
masks have a superiority over bezier representation.

5. Conclusion and Future Work
In this work we introduced a novel instance-mask

based methodology called TopoMask as an alternative to
keypoint-based and parametric approaches commonly used
in centerline detection. The performance of TopoMask was
evaluated in comparison to the TopoNet architecture, and
the results showed that TopoMask performs comparably to
TopoNet in terms of Frechet-based centerline detection per-
formance, while outperforming TopoNet in Chamfer-based
centerline detection performance.

However, one limitation of the TopoMask architecture is
its inability to predict the z information. Assigning zero
values to the ground truth z leads to a Frechet-based de-
tection score of approximately 0.92, indicating the potential
for further improvement. Additionally, in the proposed ar-
chitecture, some of the point sets of the centerlines are not
monotonic, but the direction labels are assigned based on
the dominant monotonicity of each axis. It is important to
address these cases differently in future research. By apply-
ing the direction label strategy of TopoMask to the ground
truths, a Frechet-based detection score of 0.92 is achieved,
suggesting that there is still room for possible enhancement.
These findings highlight the potential for refining the Topo-
Mask methodology and addressing the mentioned limita-
tions to further improve centerline detection performance.
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