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Abstract

Understanding driving scenarios is crucial to realizing
autonomous driving. Previous works such as map learn-
ing and BEV lane detection neglect the connection rela-
tionship between lane instances, and traffic elements detec-
tion tasks usually neglect the relationship with lane lines.
To address these issues, the task is presented which in-
cludes 4 sub-tasks, the detection of traffic elements, the de-
tection of lane centerlines, reasoning connection relation-
ships among lanes, and reasoning assignment relationships
between lanes and traffic elements. We present Separated
RoadTopoFormer to tackle the issues, which is an end-to-
end framework that detects lane centerline and traffic el-
ements with reasoning relationships among them. We op-
timize each module separately to prevent interaction with
each other and aggregate them together with few finetunes.
For two detection heads, we adopted a DETR-like archi-
tecture to detect objects, and for the relationship head, we
concat two instance features from front detectors and feed
them to the classifier to obtain relationship probability. Our
final submission achieves 0.445 OLS, which is competitive
in both sub-task and combined scores.

1. Introduction

In recent years, the availability of public large-scale
datasets and benchmarks has greatly facilitated autonomous
driving research. Many datasets [2, 9] focus on sensing vis-
ible lane lines to keep vehicles on the right track only, or to
obtain traffic information by detecting traffic signals only.
However, the separation of tasks leads to a limited under-
standing of driving scenarios. For example, a driving vehi-
cle will be confused when it sees a green light but the lane
it follows is controlled by another red light. Based on this
limitation, a key aspect of this task [8] is to understand the
complex driving environment, which is a prerequisite for
making reasonable decisions. On the one hand, this task
wants to establish a strong association between traffic el-
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ements and lanes. On the other hand, understanding the
separations between neighboring lanes is also necessary for
guiding the vehicle driving on the desired trajectory. Both
topology reasoning tasks are extremely challenging.

This task can be divided into two parts simply, which are
scene structure perception and reasoning. The scene struc-
ture perception aims to find out what and where the traffic
elements and lanes are and the reasoning aims to understand
the relationship between them. The latter is highly depen-
dent on the former, but the reverse is not certain. So, we op-
timize each module separately to prevent interactions dur-
ing training, and finally integrate them by finetuning. Ex-
periments prove it works. We also have made other experi-
mental improvements, please refer to Section 3.

2. Datasets
Road Genome, also known as OpenLane-V2 [8], is

the first dataset focusing on topology reasoning in the au-
tonomous driving area. It contains 2.1M instance-level an-
notations and 1.9M positive topology relationships. This
challenge is based on subset A, which contains 22477
training frames, 4806 val frames, and 4816 test frames.
Each frame contains 6 surrounding images with resolution
1550×2048 and a front-view image with resolution 2048×
1550. The final metric is OpenLane-V2 Score (OLS), which
is the average of various metrics from different subtasks and
is defined to describe the overall performance of the primary
task: OLS = 1

4 [DETl+DETt+ f(TOPll)+ f(TOPlt)],
where f is a scaling function that balances the scale of dif-
ferent metrics.

3. Methods
3.1. Baseline

The official baseline [8] provides a simple and easy-to-
follow framework that generates two feature maps from dif-
ferent views. One is in BEV (Bird’s-eye view) and the other
one is in PV (Perspective view). The former is used to pre-
dict lane centerlines (LCs) and the latter is for traffic el-
ements (TEs) prediction. Two detection heads adopt simi-
lar DERT-like architectures. The following two relationship
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Figure 1. Overall framework.

Method DETl ( % )
Baseline 9.57

+ decoupled training 10.59
+ 11 points representation 13.58

+ swin-s & rescale 22.19
+ finetune with smaller lr 23.44

+ hierarchical query 23.80
+ intersection-sensitive 25.87
+ finetune whole model 26.95

Table 1. Ablation of 3D centerline detection on OpenLane-V2
validation set.

Method DETt ( % )
Baseline 45.89

+ swin-s & decoupled training 58.41
+ DINO head 60.23

+ finetune whole model 61.42

Table 2. Ablation of traffic element detection on OpenLane-V2
validation set.

prediction modules establish pairwise relationships, which
contain a L×L lanes relationship matrix and a L×T lanes-
traffic elements relationship matrix, where L and T repre-
sent the numbers of LCs and TEs from front detected results
. Then two subsequent MLPs are used to predict the logits
of two kinds of relationships, respectively.

3.2. Architecture

The design of our algorithm follows Road Genome [8].
However, unlike Road Genome, our TE branch and LC

Method TOPll ( % )
Baseline 0.92

+ better LC detector 3.90
+ geometric clues 14.26

+ finetune whole model 15.37

Table 3. Ablation of topology prediction between lane centerlines
on OpenLane-v2 validation set.

branch do not share a common backbone as demonstrated
in Figure 1. Instead, each branch has an independent back-
bone network to extract features. This modification allows
for independent feature learning and data augmentation for
two detection tasks.

Lane centerline detection. Given multi-view images,
we first use a shared Swin-small [7] backbone to extract
features from each view’s image. Then, we apply BEV-
Former [6] to transform the multi-perspective view features
into a unified BEV feature. Later, a Deformable DETR-
like [11] transformer is utilized to extract query-wise infor-
mation of the 3D lane centerlines based on the BEV fea-
ture. Finally, each output query is passed through an LC
head to predict the confidence of a line and the coordination
of 11 equally spaced 3D points in the centerline. The co-
ordination of each 3D point is normalized according to the
detection range.

Traffic element detection. We utilize a separated and
independent Swin-small backbone to extract the perspective
view feature from the front center image. DINO [10] head
is employed to detect 2D traffic elements.

Topology prediction. We follow the design of topology
prediction in STSU [1]. Every two objects’ query will be
concatenated. The concatenated feature will pass through



Method DETl ( % ) DETt ( % ) TOPll ( % ) TOPlt ( % ) OLS ( % )
Baseline [8] 9.57 45.89 0.92 11.46 24.72

Ours 26.95 61.42 15.37 21.81 43.57

Table 4. Submission results on OpenLane-V2 validation set.

Method DETl ( % ) DETt ( % ) TOPll ( % ) TOPlt ( % ) OLS ( % )
TopoNet [5] 19 58 2 16 33

Ours 22 72 13 23 45

Table 5. Submission results on OpenLane-V2 test set.

an MLP and a sigmoid layer and output a relationship con-
fidence. The two objects will be considered as having a
topology relationship only if the confidence is greater than
0.5. Instead of considering all queries like the baseline, we
only consider the query whose confidence is bigger than a
prior threshold.

3.3. Bells and whistles

Hierarchical query. For 3D centerlines detection, the
locations of points are significant for the final performance.
We design two kinds of queries, point query and instance
query, to make the query input transformer decoder have
better representation ability. Point queries Qp ∈ RNp×D

and instance queries QI ∈ RN×D are first passed through
a self-attention module to model the relationship between
queries, where Np represents the number of point queries
and is set to 11 to be equal to the final output number of
points, N represents the max number of centerlines, and D
represents the dimension of the embeddings. To aggregate
the feature of both kinds of queries, a point pooling module
is proposed to get a global feature across point queries. We
utilize the sum operation to pool the point queries. Finally,
LC query QLC is obtained by adding each instance query
to the 3D global pooling point feature.

Qpooled = PointPooling(Qp) =

Np∑
i=1

Qp,i, Qp,i ∈ RD

(1)

QLC,i = QI,i +Qpooled (2)

Intersection-sensitive classification head. The
OpenLane-V2 [8] dataset contains two kinds of centerline,
normal lane centerline and connecting line in intersections,
which are evidently different. Unlike normal lane center-
lines with obvious local texture features, connecting lines in
the intersection are virtual lines, which are used to describe
the relationship among normal lane centerlines. Therefore,

we distinguish these two categories in the classification
head in the LC head. As shown in Table 1, this simple
strategy improves the DET l metric by 2.43%.

Swin backbone and input resolution. Because the in-
put image size of the baseline [8] is the original resolution
of the image, which is 1550x2048, the batch size can only
be set to one on every GPU when training the whole model.
However, the backbone of the baseline is ResNet50 [4] and
utilizes BatchNorm, which is inappropriate when the batch
size is set to one. Therefore, we utilize Swin-small [7] as
our backbone for both LC branch and TE branch, which ap-
ply LayerNorm instead of BatchNorm. Besides, to speed up
the training and save device memory, we resize the multi-
view images to 775x1024. For the front view image, we
keep its size as its original resolution (2048x1550), be-
cause its overhead is affordable. The backbones in both two
branches are pre-trained in ImageNet1K [3].

11 points representation. Instead of representing the
3D line as five Bezier control points like STSU [1], we di-
rectly model the 3D line as 11 equally spaced keypoints in
its skeleton. We found this simple representation is surpris-
ingly better than the Bezier curve. Results are shown in
Table 1.

DINO TE detector. We use the DINO [10] detector
head instead of the original deformable-detr of the baseline
with 900 queries. As show in Table 2, DINO brings about a
2% gain for traffic elements detection.

Geometric clues for relationship prediction between
centerlines. The topological relationship between center-
lines is not only related to semantic information but also
associated with their geometric locations. If the endpoints
of the centerlines of two lanes are very close, then there is a
high probability that they are topologically related. There-
fore, we introduce geometric clues for relationship predic-
tion between centerlines in two aspects. First, we concate-
nate the LC query with its start point and end point which
are predicted by the LC regression head. Second, any two
lane centerlines whose start and end points are less than
three meters apart will be considered to have a topologi-



cal relationship, even if their relationship confidence is less
than 0.5. Results are shown in Table 3.

Decoupled training and integrated finetuning. Instead
of training all modules of the whole network simultane-
ously, we decouple different modules and train only one
of them each time. Specifically, we first independently
train the LC module and TE module. Then, two relation-
ship heads are trained with frozen backbones and detection
heads. The decoupled training strategy helps us quickly ver-
ify an improvement idea for a single module. Meanwhile,
this strategy enables each module to perform its own du-
ties and avoids the impact between different tasks. After all
modules are trained independently, we finetune the whole
network with a smaller learning rate. During finetuning,
only four heads are unfrozen, including the LC head, TE
head, and two relationship heads. In the decoupled train-
ing set, we follow the training setting in Road Genome [8],
including the optimizer, the learning rate update schedule,
and so on. The learning rate will be adjusted proportionally
with the batch size. In the finetuning stage, we set a smaller
learning rate, which is a quarter of the decoupled training
stage.

4. Final Results
For the final submission, we apply all the aforemen-

tioned strategies for performance improvement. The per-
formances on the OpenLane-V2 validation and test set are
demonstrated in Table 4 and 5, respectively.
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