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1 Introduction

The nuPlan competition comprises three distinct challenges: open-loop, closed-loop with nonreac-
tive agents, and closed-loop with reactive agents. We find that rule-based planners excel in closed-
loop scenarios but lag behind learned methods in long-term forecasting in the open-loop evaluation
and vice versa. Recognizing that closed-loop performance strongly relies on the initial two seconds
of the trajectory, while open-loop scores predominantly depend on accurate endpoint estimation, we
merge a rule-based planner with learned ego-forecasting techniques. To this end, we build our PDM
short-term planning module upon the well-known IDM planner [1], incorporating ideas from model
predictive control. Moreover, we use GC-PGP [2] to accurately estimate the endpoint over the full
eight seconds planning horizon. Our combined system integrates both sub-planners by interpolating
between the short-term and long-term plans. We find that this effectively combines the strengths of
both modules. Our method ranked first on the public nuPlan leaderboard and won the 2023 nuPlan
challenge. Given its simplicity, it provides a robust starting point for motion planning research. All
code and models are publicly released.

2 Predictive Driver Model

In this section, we describe our proposed hybrid planning model composed of a rule-based short-
term planning module and a long-term ego-forecasting component. For the short-term planning
crucial for closed-loop performance, we extend the IDM planner with concepts from model predic-
tive control. We refer to this model as PDM-Closed, i.e., Predictive Driver Model (Closed-Loop).
Additionally, we leverage an ego-forecasting module to obtain an accurate prediction of the long-
term trajectory, which we refer to as GC-PGP++. The overall model architecture is shown in Fig. 1.

2.1 Short-Term Planning

Path Planning. In contrast to IDM, PDM-Closed utilizes Dijkstra, with the lane length as edge
weights, to search for a sequence of lanes along the route and extract their centerline. We found
Dijkstra slightly more suitable due to avoiding detours while having no substantial effect on runtime.

Observation & Forecasting. We forecast dynamic agents for the planning horizon of 8s by as-
suming constant velocity and heading angle. The projected bounding boxes, together with the static
obstacles, are stored in occupancy maps. We only consider the nearest 50 vehicles, 25 pedestrians,
10 bicycles, and 50 static objects to the ego agent. Thereby, the planner avoids exploding compu-
tation costs when near a large number of entities (e.g., a crowd of pedestrians). Like IDM, we add
intersections on the route with a red traffic light as stationary objects.

Proposals. We generate proposals by pairing 3 centerline offsets and 5 IDM policies at varying
target speeds, resulting in 15 proposals. The parameters are summarized in Table 1. We use higher
acceleration parameters than standard IDM to foster progress. We unroll the proposals for a shorter
horizon of 4s to avoid high computation costs in subsequent steps.

Simulation. Trajectories in nuPlan are simulated by iteratively retrieving actions from an LQR
controller and propagating the ego vehicle with a kinematic bicycle model [3]. As the controller
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Figure 1: Architecture. PDM-Closed selects a centerline, forecasts the environment, and creates
varying trajectory proposals, which are simulated and scored for trajectory selection. The GC-PGP++
module aggregates route-constrained trajectory samples via expectation. Our final planner combines
both trajectories.

Parameter | Value \ Description
0 {-1,0,1} m Centerline offsets

i Desired velocity. Either the current speed-limit,
vo {5vlane}i:1""’5 Or Ve = 15 m/s if speed-limit not available.
S0 1.0m Desired net distance to the leading agent o — 1.
T 1.5s Desired time headway to leading agent o — 1.
a 1.5 ms—2 Maximum acceleration of ego vehicle
b 3.0 ms~2 Maximum deceleration (positive) of ego vehicle «
) 10.0 Acceleration exponent.

Table 1: PDM-Closed Parameters.

is often unable to track the planned trajectory robustly, we simulate the outcome of each proposal
before evaluating it.

Scoring. Our scoring function closely resembles the nuPlan closed-loop metrics [4]. However,
we leverage a computationally efficient re-implementation of the metrics to meet the strict runtime
requirements of the competition. The scoring considers at-fault collisions, driveable area infrac-
tions, and driving direction compliance as multiplicative metrics. Furthermore, the scoring evalu-
ates progress, time-to-collision, and comfortability as weighted metrics. We normalize the progress
metric with the highest progress of a proposal, which is free of multiplicative infractions. We use the
same weights as nuPlan, but ignore speed-limit compliance and the binary no-progress metric since
the IDM proposals are naturally bound to comply with the current speed limit, and the no-progress
metric cannot be evaluated without privileged knowledge of the human expert’s behavior.

Trajectory Selection. Finally, PDM-Closed outputs the highest-scoring proposal which is extended
to the complete planning horizon of 8s with the corresponding IDM policy. If the best trajectory is
expected to collide within 2s, the output is overwritten with an emergency brake maneuver.



2.2 Long-Term Correction

The PDM-Closed component is able to achieve excellent performance in the closed-loop evaluation.
However, it is unable to accurately imitate the human expert’s long-term plan, resulting in poor open-
loop performance. Therefore, our method combines PDM-Closed with an ego-forecasting approach,
namely GC-PGP++, which is a modified version of GC-PGP [2]. Finally, we fuse the trajectories of
GC-PGP++ and PDM-Closed, resulting in our hybrid planner PDM-Hybrid.

Goal-conditioned Ego-Forecasting via Graph-based Policy. GC-PGP extends the state-of-the-art
prediction model, called PGP [5], for goal-directed ego-forecasting.

The model receives an ego-centered lane-graph representation and observed states of surrounding
agents and the ego vehicle. The nodes in the lane graph compromise polylines of similar length, with
directed edges for lanes in proximity or the direction of traffic flow. The lane nodes and dynamics
of the surrounding agents and the ego vehicle are encoded with separate Gated Recurrent Units
(GRUs). The model aggregates the information by applying Agent-to-Node Attention and Graph
Neural Network (GNN) layers, yielding a per-node feature representation.

The node features are used to estimate transition probabilities for outgoing edges. Subsequently,
traversals across the lane graph are sampled. During inference, GC-PGP masks out off-route edges
to ensure goal-compliant traversals. Then, a latent-variable model decodes trajectories based on
the traversals and the ego-motion encoding. The output trajectories are obtained after a k-means
clustering. The original version of GC-PGP selects the cluster centers with the highest rank as output
trajectory.

Modifications. We observe that the goal-conditioned trajectories do not describe disjoint behav-
iors. Hence, we omit the k-means clustering and instead calculate the expectation of all decoded
trajectories by averaging. We observed that our modification for GC-PGP++, paired with the hard
route constraints of GC-PGP, led to a small OLS performance increase while being computationally
more efficient.

2.3 Hybrid Planning System

Our hybrid planning system combines the strong closed-loop performance of PDM-Closed with the
open-loop capabilities of GC-PGP++.

Trajectory Fusion. Since the closed-loop performance is almost exclusively determined by the first
two seconds of the trajectory, we keep this short-term plan from the PDM-Closed module and append
the remaining trajectory from GC-PGP++ to it. This preserves the strong closed-loop performance
while only slightly impairing the open-loop score.

Runtime optimization. The planning system is evaluated under stringent time constraints for the
online leaderboard evaluation, i.e., with a maximum of 1 second per frame. To save runtime, our
planner can distinguish between open- and closed-loop evaluation and infers the rule-based short-
term planner only in closed-loop. The detection is done by simulating the trajectory of the previous
iteration for one step. If a notable displacement between the simulated and observed position occurs,
the planner assumes to be in open-loop evaluation.

Note that in an updated version of our planner (designed immediately following the challenge
deadline), we replace the GC-PGP open-loop module with a lightweight and fast multi-layer per-
ceptron. This reduces runtime significantly and simplifies our method. Therefore, we omit the
evaluation mode detection in our final version of PDM used in our research paper. All details re-
garding this updated planner, as well as the insights gained from our preliminary experiments and
ablation studies, are available in the full research paper [6]. We released all code and models at
https://github.com/autonomousvision/tuplan_garage
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Method | Rep. | CLS-R?t CLS-NR 1 OLS?T | Time |

IDM [1] Centerline 77 76 38 27
PDM-Closed (Ours) Centerline 92 93 44 91
GC-PGP [2] Graph 54 57 82 100
PDM-0pen (Ours) Graph 49 50 84 84
Urban Driver [7] Polygon 44 45 76 64
PlanCNN [8] Grid 72 73 64 43
PDM-Hybrid (Ours) Graph 92 93 84 172
Log Replay | GT \ 80 94 100 | -

Table 2: Benchmark Scores. We show the closed-loop score reactive/non-reactive (CLS-R/CLS-
NR), open-loop score (OLS) and runtime in ms. We also mark the input representation (Rep.)
used by each planner. PDM-Hybrid accomplishes strong capabilities in both ego-forecasting and
planning.

3 Results

Evaluation. We use all 70 scenario types from nuPlan for training and sample a maximum of 4k
scenarios per type, totaling ~178k training scenarios. For evaluation, we use 100 scenarios of the
14 scenario types used for the leaderboard, totaling 1,118 scenarios. Despite minor imbalance (for
some scenario types, less than 100 scenarios are available), our validation split aligns well with the
online leaderboard results.

Baselines. We include two additional SoTA approaches adopting ego-forecasting for planning in
our study. Urban Driver [7] encodes polygons with PointNet layers and predicts trajectories with
a linear layer after a multi-head attention block. P1anCNN [8] predicts waypoints using CNN from
rasterized grid features without ego state input. It shares several similarities to ChauffeurNet [9],
a seminal work in the field.

Training. We train our GC-PGP++ model as proposed in [2] for 70 epochs with a batch size of 32
and a learning-rate of 1e~* that is decayed after 40, 50, and 55 epochs by a factor of 0.5.

Hardware Simulation, training, and runtime analysis were performed on an AMD Ryzen 9 7950X
CPU, 64GB memory, and a single NVIDIA RTX 3090 GPU.

Results. Our results, presented in Table 2, highlight PDM-Closed’s advantages over IDM in terms
of CLS. Moreover, PDM-Hybrid successfully combines PDM-Closed’s closed-loop excellence with
GC-PGP++’s open-loop performance, setting the SOTA for this benchmark. Intriguingly, P1anCNN
achieves the best CLS among learned planners, likely due to its design choice of removing the ego
state from input, trading OLS for enhanced CLS. Furthermore, the Log Replay planner, outputting
the ground-truth ego future trajectory, fails to achieve a perfect CLS, partly due to nuPlan’s simplistic
LQR controller occasionally drifting from the provided trajectory. PDM-Hybrid compensates for
this by evaluating IDM proposals based on the expected controller outcome.
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