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Abstract

This paper presents our 2nd place solution for the Nu-
plan Challenge 2023. Autonomous driving in real-world
scenarios is highly complex and uncertain. Achieving safe
planning in the complex multimodal scenarios is a highly
challenging task. Our approach, Imitation with Spatial-
Temporal Heatmap, adopts the learning form of behavior
cloning, innovatively predicts the future multimodal states
with a heatmap representation, and uses trajectory refine-
ment techniques to ensure final safety. The experiment
shows that our method effectively balances the vehicle’s
progress and safety, generating safe and comfortable tra-
Jjectories. In the Nuplan competition, we achieved the sec-
ond highest overall score, while obtained the best scores in
the ego progress and comfort metrics.

1. Introduction

The Nuplan challenge is the world’s first large-scale
planning benchmark for autonomous driving [5]. It offers
approximately 1300 hours of human driving data sourced
from four different cities across the US and Asia with highly
complex and diverse scenarios. Unlike previous competi-
tions, Nuplan focuses more on long-term planning rather
than short-term motion prediction. It also provides a highly
realistic simulator for conducting closed-loop evaluation
that aligns more closely with real-world scenarios. Amidst
the numerous competitors, our methodology stood out as
the second place in the competition.

We use an imitation learning approach with several inno-
vations, including using a spatial-temporal heatmap to rep-
resent the distributions of the ego future trajectory, and us-
ing a multitasking learning approach to predict and model
the surrounding dynamic objects. With these dynamic and
static future environment, we find the optimal trajectory
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with a post-solver. Our ablation studies demonstrate the ef-
fectiveness of these techniques.

2. Methodology

In this section, we describe our model as shown in Fig. 1.
Our system comprises two stages: the behavior cloning
stage and the trajectory refinement stage. In the first stage,
the model is trained by supervised learning to generate the
initial plan, multi-modal heatmap, and the future behavior
of surrounding agents. The second stage focuses on refining
the initial trajectory, taking into account the vehicle’s kine-
matics, comfort, and safety constraints. We first introduce
our input representation, and then elaborate the structure of
our model, and lastly give a more detailed description of the
trajectory refinement stage.

2.1. Input Representation

In the context of autonomous driving, raster serves as a
grid-based representation of the environment. They offer a
snapshot of the surroundings, where the grids contain es-
sential information of road layout, traffic conditions, and
vehicle status. Raster provides a structured format that is
particularly useful for processing spatial domain informa-
tion.

For this competition, we created a six-channel raster,
each channel realizing an environmental modality, includ-
ing ego vehicle’s current state, other agents’s history, cur-
rent map information and navigation route, etc.. The ego
channel represents our vehicle’s state and position. The
road map channel encapsulates physical layout features,
transformed from a vector-based map. Baseline-path chan-
nel displays all lanes within a specific range. Agent chan-
nels encode traffic participants other than the ego car, using
2D representations on the raster grid. The route raster out-
lines a navigation route for the planning model to follow.
Finally, the ego speed channel fills the 2D raster with the
ego vehicle’s speed. This multi-channel raster input offers
a comprehensive spatio-temporal environmental depiction,
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Figure 1. Overall structure of our model. The neural network predictor predicts the future occupancy of the surrounding agents and the
initial plan. A post-solver is employed to explicitly refine the planned trajectory. 7 denotes the plan trajectory of the ego vehicle, A; denotes
the weight hyperparameters associated with the cost function ¢;, O denotes as occupancy predictions, H denotes the heatmap prediction,

and M denotes the input HD map.

enabling the model to comprehend and anticipate traffic dy-
namics.

2.2. Network Structure

Encoder To encode the input data, we employ
ResNet [6] as our convolutional neural network (CNN) en-
coder. Specifically, we utilize ResNet50 in our implementa-
tion. The encoder is responsible for generating multi-scale
features denoted as C', C, C3, Cy, C5, where C; represents
the feature map with a spatial size of 25 X 2E serving as the
input for the subsequent components.

Neck The neck component in our model follows the ar-
chitecture of Unet [12], which facilitates the integration of
features at multiple resolutions, enabling the model to cap-
ture both fine-grained and high-level contextual informa-

tion.

2.2.1 Heads

Our method employs three distinct heads dedicated to dif-
ferent tasks, namely ego trajectory prediction, ego heatmap
prediction and surrounding agents occupancy predictions.
Trajectory head The trajectory head generates the ini-
tial plan, which is composed of two fully-connected layers.

The output trajectory is denoted as 7 € R7*3, where T
represents the number of time steps and 3 denotes the three-
dimensional parameters (e.g., X, y, heading) of the predicted
trajectory.

Heatmap head Inspired by HOME [4], we adopt a bird-
eye-view heatmap representation for ego trajectory. Differ-
ently, we model ego location at each time step. Each pixel
in the output image represents a location on the ground, and
the value at each pixel indicates the probability or confi-
dence associated with the presence of each trajectory point
at that particular location. In order to predict the ego plan
on a more finely-grained scale, we up-sample the original
feature to 0.25m x 0.25m/pixel.

To generate the target output, we use a Gaussian dis-
tribution centered around the ground truth position. This
approach allows the model to capture the uncertainty and
multi-modality in the each trajectory point prediction.

Occupancy head To model the surrounding dynamic
environment, we employ the occupancy head, which pre-
dicts the motion behavior of other agents in the form of
probabilistic occupancy grids [8]. Specifically, the occu-
pancy head predicts occupancy logits for each timestep t
and shares the same feature resolution as the input raster.



2.3. Collision Avoidance Map

To better serve downstream applications, it is necessary
to transform the predicted ego vehicle pose, the predicted
occupancy probability of surrounding agents, and the static
information (HD maps) into a collision probability density
map. The collision probability density map represents the
probability of collision at a given location in the coordinate
system of the predicted future trajectory. Innovatively, we
leverage the group convolution operator [3] on the GPU to
efficiently execute this step and achieve real-time perfor-
mance. Specifically, we merge other agents’ predicted oc-
cupancy Oagents, static objects Ostanc, and the drivable area
Odrivab]e into a non-drivable area map Onon_drivable. With the
predicted ego vehicle pose 73, we create a convolution ker-
nel W (7, Hego, Wego) that matches the shape and future
pose of the ego vehicle. By performing a convolution of
this kernel on the non-drivable area, we can obtain the de-
sired collision probability density map.

A t ~ t ~ -
Onon—drivable = Oagem|OStatic‘Odrivable; (1)

Ot = COHV(W(ﬂ, Hegm Wego)a Onon-drivable) (2)

2.4. Post-Solver

Similar to UniAD [9], we employ CasADi [!] ipopt
solver, which takes into account the vehicle’s kinematics,
comfort, predicted heatmap probability, and collision prob-
ability density map. By adjusting the initial trajectory
through the post solver, we aim to achieve a safe and com-
fortable trajectory for vehicle control. Specifically, we de-
note the output trajectory as the parameter 7 € R7 %3, the
imitated initial trajectory as 7 € RT3, the collision proba-
bility density map as O € R"***T _the heatmap prediction
as H € R"*%*T The cost function f(-) is calculated by:
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where Aimi, Ao, Ap are the hyperparameters, and the kine-
matic function set ¢ has five terms including jerk, curva-
ture, curvature rate, acceleration and lateral acceleration.
To speed up the inference, we sample the S, nearest occu-
pied pixels and the top S}, heatmap pixels at each time step.

Moreover, to ensure the model can output trajectories that
are consistent with actual physical conditions, we add some
hard constraints, including dynamic constraints for the ego
vehicle, state constraints, and control constraints.

2.5. Learning

We adopted a multi-task learning approach. For the pre-
diction of the initial trajectory and pose of the ego vehicle,
we employed a weight-decay L1 loss as shown in eq 6. For
the heatmap supervision, we utilized the penalty-reduced
pixelwise logistic regression with focal loss [7,11] as shown
in eq 7, where H, is the predicted ego vehicles’s location at
time t, and H, is the target ground truth. Positive samples
correspond to the locations of the expert trajectory, denoted
as 7. All other locations are considered negative samples,
with penalties attenuated by a Gaussian kernel. For the oc-
cupancy, we applied binary cross-entropy loss. And lastly
we take a weighted sum as the final loss.

T
t
Limi = Xt:exp(ﬁ)llﬁﬁtlll (6)
Ly =Y _H(Hy, Hy) (7)
t
Loce = »_B(01,0y) ®)
t

L = Aimi * Limi + Awm * Lhm + Aoce * Loce- 9

3. Experiments

We generated the rasterized input withina 112m x 112m
region at a resolution of 0.5m/pixel, resulting in an input
spatial size of 224 x 224. To optimize our model, we employ
the Adam optimizer [10] along with a multiple-step policy.
The initial learning rate was set to 2 x 1074, and a weight
decay of 5 x 10~* was applied. Furthermore, we assign the
following loss coefficients: Ao = 100, Ay = 1.0, and
Aimi = 1.0. The model was trained for 20 epochs with a
batch size of 32.

Regarding the data, we employed a random sampling
strategy where 50,000 frames per scenario type were se-
lected from the training dataset, resulting in a total of ap-
proximately 1.5 million frames.

To enhance the model’s performance, we introduced per-
turbations during training, inspired by the methodology pro-
posed by ChauffeurNet [2]. Specifically, we applied a uni-
formly distributed random jittering to the current pose of
the ego agent within the ranges of [0, 1.0] meters along the
x-axis and [-1.0, 1.0] meters along the y-axis. Additionally,
the heading was perturbed by an angle between [-0.25, 0.25]
in radians. To ensure smooth trajectories, we fit a trajectory
starting at the perturbed point and ended at the original end
point, under a variety of dynamic constraints. These per-
turbed training examples enabled the ego car to recover its



perturbation heatmap post-solver | final score openloop  cl-nr cl-r | collisions TTC drivable comfort progress speedlimit direction
0.782 0.825 0.773  0.748 0.878 0.817  0.985 0.991 0.985 0.969 0.985
v 0.803 0.865 0.786  0.758 0.886 0.835  0.951 0.988 0.922 0.959 0.987
v 4 0.832 0.854 0.836  0.805 0.935 0.860  0.964 0.980 0.931 0.960 0.989
v 4 v 0.876 0.852 0.896 0.882 0.967 0910 0.994 0.992 0.920 0.962 0.992

Table 1. Ablation Study. “cl-nr” means close loop non-reactive simulation, which is identical to challenge 2 in the Nuplan challenge. “cl-r”
means close loop reactive simulation, which is identical to challenge 3. In the last major column, we present the detailed metrics for close
loop non-reactive simulation. “TTC” means time-to-collision.

rank methods final score  open loop (chl) cl-nr(ch2) cl-r(ch3) | collisions TTC drivable comfort progress speed limit direction
1 CS_Tu 0.90 0.83 0.93 0.93 0.99 0.93 1.00 0.92 0.91 1.00 1.00
2 hoplan(Ours) 0.87 0.85 0.89 0.88 0.96 0.91 0.99 0.99 0.92 0.96 0.99
3 pegasus_multipath 0.85 0.88 0.82 0.85 0.93 0.88 0.95 0.93 0.79 0.93 0.95
4 GameFormer 0.83 0.84 0.81 0.84 0.94 0.88 0.96 0.94 0.84 0.97 0.99

Table 2. Final leaderboard of the Nuplan Challenge on the private test set. Here we display the scores for challenge 1,2 and 3, and the final
ranking was an average of these three scores, as indicated in the gray area of the table. In the last major column, we present the detailed

metrics for close loop non-reactive simulation.

normal trajectory if experiencing a deviation from its nor-
mal route.

4. Results

4.1. Ablation Study

In this section, we conduct an ablation study on the
aforementioned techniques, as shown in Tab. 1. We can ob-
serve that perturbation improved both open-loop and close-
loop performances. As a form of data augmentation, per-
turbation can significantly enhance the data utilization rate.
For the heatmap prediction, we saw a substantial enhance-
ment in close-loop performance, particularly in close-loop
reactive scenarios and collision rate. This demonstrates that
the spatial-temporal heatmap could be a better representa-
tion of planning compared to single trajectory. In later vi-
sualizations in Sec. 4.3, we can observe the effectiveness
of the heatmap representation in modeling multi-modality
and uncertainty. Furthermore, the bird’s eye view spatial
representation aligns well with our raster input, guiding
the model’s convergence. Furthermore, by incorporating
the post-solver, we noticed a significant boost in close-loop
performance, notably in collision and drivable area compli-
ance, validating the effectiveness of post-optimization in the
modeled environment.

4.2. Learderboard

Here, we present our ranking on the private test set in
the NuPlan competition, as shown in Tab. 2. Notably, We
achieve the highest comfort and ego progress among all
competitors.

4.3. Visualizations

In this section, we present a qualitative assessment of
our planner’s performance through closed-loop simulation
results, under representative driving scenarios. These sce-
narios are visualized as sequential snapshots of the closed-
loop rollouts. The top row displays images generated us-
ing the nuboard visualization tool, illustrating the smooth
movement of the ego vehicle, denoted by a white rectangle.
The bottom row demonstrates corresponding model predic-
tions. Here, the heatmap predictions are indicated in red,
pixels of potential collision or boundary exceedance that
warrant close attention are marked in yellow, and the fi-
nal planned trajectory for the ego vehicle is shown as green
dots. Fig. 2. 3. 4 shows the visualization of some of our
planning results.

5. Conclusion

In this work, we introduce our winning solution for
the Nuplan challenge. We adopt a novel spatial-temporal
heatmap representation for planning, along with a corre-
sponding post-solver to ensure a final plan that is both safe
and comfortable. Experimental results validate the effec-
tiveness of every component, highlighting our method’s ap-
titude for balancing the ego progress and safety while gen-
erating safe and comfortable trajectories.
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Figure 2. The ego vehicle expertly navigates a wide left turn, seamlessly entering the designated pick-up zone.
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Figure 3. The ego vehicle exhibits patience as it allows several pedestrians to safely traverse the crosswalk, subsequently accelerating
smoothly to continue its journey once the path is clear.
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Figure 4. The ego vehicle demonstrates patience, awaiting numerous pedestrians to complete their crossing before executing a smooth,
unprotected right turn with precision.
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