
An Imitation Learning Method with Data Augmentation and Post Processing for
Planning in Autonomous Driving

Weitao Xi Liangchao Shi Guangzhi Cao
Pegasus Technology Holdings Inc.

{xiweitao, shiliangchao, gary.cao}@pegasus.tech

Abstract

Motion planning with imitation learning in autonomous
driving is challenging, because of the complexity of scenar-
ios and the distribution difference between training data and
actual driving. In this paper, we propose an novel imita-
tion learning method that incorporates data augmentation
and post-processing techniques. Our model utilizes recent
advance in motion prediction, such as vectorized map rep-
resentation, transformer encoder and decoder, and GMM
output with predefined initial queries. Data augmentation
is used to generate data which deviates from expert trajec-
tories. In post-processing, we employ a low planning rate
to mitigate error accumulation, and a collision detector to
trigger timely replanning. Finally, our method achieved 3rd
place in the CVPR 2023 Autonomous Driving Challenge -
Track 4 Nuplan Planning.

1. Introduction

Recent advancements have been observed in the field
of motion prediction for autonomous driving, with numer-
ous techniques proposed to enhance performance. Vector
map representation for HD maps was proposed and achieve
better performance than rastering presentation [3]. In order
to fuse a heterogeneous mix of modalities, such as agents’
past trajectories, static road information, and time-varying
traffic light information, the transformer encoder has been
extensively employed to encode various types of input si-
multaneously [5]. In modeling the multi-modality of output
trajectories, the transformer decoder cross attend appropri-
ate queries, such as the target position or trajectory modes,
with scene embedding from the encoder to generate trajec-
tories [4, 6]. Notably, the Wayformer has combined these
techniques and achieved state-of-the-art performance [5].

Pure imitation learning proves to be insufficient for au-
tonomous driving [1]. For long series decision-making prob-
lems, imitation learning tends to suffer from issues related to
error accumulation and distribution mismatch. These issues

can be alleviated through data augmentation and a decreased
planning rate.

Nuplan is the world’s first large-scale planning benchmark
for autonomous driving [2]. The Nuplan planning challenge
is consisted of three modes: open-loop, closed-loop with non-
reactive agents, and closed-loop with reactive agents. The
open-loop mode bears similarities with the motion prediction
problem, while the closed-loop modes align more with the
standard motion planning problem.

Our approach leverages imitation learning, supplemented
by data augmentation and post-processing. Our model use
vectorized map representation. Transformer encoder is em-
ployed to fuse different types of input feature. Latent query
attention is used to reduce computational cost. To repre-
sent multi-model output, Gaussian mixture model (GMM)
with predefined initial queries is used. We apply random
perturbation to the current state of the ego to augment data.
To mitigate error accumulation, we use a lower planning
frequency. Moreover, we employ collision detection and in-
map detection to trigger re-planning and select an optimal
trajectory among candidate trajectories.

2. Method
2.1. Input Feature

Ego states, with dimensions [1, 1, Dego], encapsulate the
current kinematic of the ego vehicle. Unlike most meth-
ods that employ both current and past ego states, we opt to
use solely the current kinematic states to simplify the data
augmentation process, discussed later in 2.3. The feature
dimension encompasses information like position, speed,
acceleration, heading, heading rate, and steering angle.

Agent states incorporate information concern-
ing surrounding agents, carrying the dimensions
[T, Sagent, Dagent]. Here, T and Sagent are pre-defined
constant. When the number of surrounding agents is less
than Sagent or an agent has fewer time-steps than T , zeros
are padded and a mask is added to the encoder. Conversely,
if the number of surrounding agents exceeds Sagent, the
agents are filtered based on their current distance to the ego

1

Verified as the Honorable Runner-up (3rd) in the nuPlan Planning Challenge by the Organizing Committee.



Figure 1. The general model structure.

vehicle.
Map information is organized via vector representation

with the dimensions [1, Smap, Dmap]. In practice, we cate-
gorize map information into several types, with each type
structured into a tensor. These types include lane center,
boundary, stop region, and crosswalk. In the Nuplan dataset,
traffic light information is embedded within the lane center
tensor. Padding and filtering follow same rules in agent state.

Route information follows a similar organizational
structure as the lane center, having tensor dimensions
[1, Sroute, Droute]. In the Nuplan dataset, an additional in-
formation called mission goal representing a long term target
position is also added to input feature.

2.2. Model

Our neural network model, as depicted in Figure 1, fol-
lows the same architecture in Wayformer [5]. Specifically,
we employ an early fusion encoder to amalgamate different
modalities. To reduce computational costs, latent query atten-
tion is implemented. Details are explained in the Wayformer
paper.

Position embedding is only added to time dimensions in
agent state tensor using sinusoidal embedding. No position
embedding is added to represent spatial relationship, since all
features in both the agent and map tensors, which comprise
start and end points, inherently capture these relationships.

Anchor seeds are predefined trajectories which will not
updated in training. In previous studies [5, 6], anchor seeds
are calculated by k-means method from all ego trajectory
data. In our implementation, we tried manually designed
trajectories characterized by constant speed and steering and

learned trajectories by k-means. Our experiments indicate
that both methods achieve similar results.

Loss function comprises both classification loss and re-
gression loss. For the regression loss, we use the L2 distance
between expert trajectory and output trajectory. In terms of
the classification loss, we have two options for target index.
One is using the index of the closest output trajectory from
the ground truth trajectory, and the other is using the index
of the closest trajectory seed from the ground truth trajectory.
Our experiments shows that using the index of the closest
trajectory seed yields better performance.

2.3. Data Augmentation

Original data only contains expert driving data. If current
ego state deviates from expert trajectory, policy should be
capable to drive the vehicle back to expert trajectory.

Past and current trajectory of the ego vehicle demon-
strate how the vehicle reach the deviated position and it
influences model input. Generating plausible past pertur-
bations is not straightforward. Past trajectories have many
possibility and past states at different times are correlated,
as shown in Figure 2 (a). It is not a good idea to directly
add random noise to past states. To circumvent this issue,
we find that past ego states are not important in our problem.
Provided the current kinematic states are accurate — a con-
dition typically met for the ego vehicle — past states offer
minimal supplementary information for decision-making.
Models, with or without past ego states, can achieve similar
results in open-loop problems. Therefore, we omit past ego
states from the input tensor and only consider current ego
states. Current state perturbation can be easily achieved by

2



Figure 2. Methods to generate reasonable augmented data. Blue
lines are expert trajectories. (a) The left and middle graphs show
different possibilities of past trajectories, and the right graph shows
a problematic past trajectory. We can not simply add noise in past
trajectory. We avoid this problem by not using it. (b) Two possible
future target trajectory. In the left graph, we simply use original
target trajectory. In the right graph, we generate a smooth trajectory
converging to expert trajectory using QP optimization. Both meth-
ods achieve similar performance.

adding a random value.
Future trajectory of the ego vehicle indicates how to

drive the vehicle back to expert trajectory and serves as the
target label. As depicted in Figure 2 (b), several options
are available to generate future trajectories for a deviated
current state. Our experiments demonstrate that simply using
the original ground truth trajectory can yield satisfactory
performance.

2.4. Post Processing

Despite the incorporation of data augmentation enabling
the model knowing how to drive the vehicle back to the ex-
pert trajectory, it remains susceptible to the neural network’s
error accumulation. Zero error is an uncommon occurrence
in supervised learning scenarios. Each planning step incurs
a small discrepancy from the expert data. In the context of
high-frequency decision-making, this error can accumulate
rapidly. In the default settings of Nuplan, a new trajectory is
planned every 0.1 second. To mitigate this issue, we decrease
the planning frequency to a 2 second interval.

However, a lower planning frequency may result in ad-
ditional collisions due to the planner’s delayed reaction to
changes in the environment. To rectify this, we introduce
collision detection and in-map detection for the planned tra-
jectory. If a collision or out-of-map condition is detected, the
planner triggers an immediate replanning process.

Our neural network model is capable of concurrently
outputting multiple trajectories. Typically, we select the tra-
jectory with the highest score. Nevertheless, if this trajectory
results in a collision or out-of-map scenario, we resort to
other candidate trajectories. If all candidate trajectories yield
a collision or out-of-map condition, we utilize a predefined
fallback trajectory that implements maximum possible brak-
ing.

overall 1 2 3

Test Phase 0.85 0.88 0.82 0.85
Warm-up Phase 0.92 0.93 0.90 0.92

Table 1. Final results in Nuplan planning challenge

3. Experiment
3.1. Implementation Details

Input feature details. For agent states, the maximum
number of agents is capped at 64, incorporating 4 past agent
states with a time gap of 0.4 seconds. For map features, the
maximum number of features allowed for the lane center,
boundary, stop region, crosswalk, and route lane center are
set to 512, 256, 128, 64, and 512 respectively. The sampling
density for map features is 4 meters per point. All input
features are normalized.

Model details. The model employs 4 transformer encode
layers for context encoding and 4 transformer decode layers
for the generation of multi-modal trajectories. To reduce
computational cost, latent query attention is employed with
sequence length 256. Both the encoder and decoder have
256 embedding dimensions, 16 heads, and 512 intermediate
hidden dimensions. We utilize 27 different anchor seeds,
with a variation of 3 speeds and 9 heading rates.

Training details. Our model is trained using the Adam
optimizer. A one-cycle learning rate schedule is employed,
with a maximum learning rate set at 2e-4 and a division
factor of 10. The model is trained over 10 epochs.

Data augmentation and post processing details. Data
is augmented with probability 0.5. Uniform random noises
are added to current ego states including position, speed,
acceleration, heading, steering angle. In every 2 second, ego
trajectory will be updated. In collision detection, we assume
that other agents move with constant speed. We detect colli-
sion for maximum 2 seconds into the future.

In Nuplan planning challenge, we need use a single plan-
ner both in closed-loop scenario and open-loop scenario. In
open loop scenario, low planning frequency will deteriorate
the result. On the other hand, the behavior of closed loop
controller is mainly determined by the beginning part of
planned trajectory. To achieve good performance on both
open loop and closed loop challenge, we concatenate the
beginning part of previous trajectory with the end part of
new trajectory calculated based on current input.

3.2. Main Results

We achieved 3rd place in Nuplan planning challenge. The
final results for test phase and warm-up phase are presented
in Table 1.

Additionally, we carried out several ablation experiments
on Nuplan validation dataset. As shown in Table 2, we

3



Method closed-loop non-reactive

pure imitation 0.77
+ data augmentation 0.78
+ post processing 0.88
+ both 0.91

Table 2. Experiment results on validation dataset for data augmen-
tation and post processing

open-loop

trajectory seed 0.91
output trajectory 0.88

Table 3. Experiment results on validation dataset for comparing the
target index choice in classification loss.

open-loop

with ego past states 0.916
no ego past states 0.912

Table 4. Experimental results on the validation dataset for deter-
mining whether the use of past ego states is effective

find post processing can significant improve performance
in closed loop challenge. In Table 4, we show that not us-
ing ego past states in input feature get almost same result
compared with using past states in open loop challenge. As
shown in Table 3, using the index of the closest anchor seed
instead of the index of the closest output trajectory in the
classification loss significantly improved performance. This
improvement could be due to the overcoming of the modal
collapse typically encountered in GMM.

During data augmentation, we attempted to generate a
smooth future trajectory that converges towards the expert
trajectory, with the expectation of better performance than
simply using the expert trajectory as shown in Figure 2. We
generated these trajectories using a Quadratic Programming
(QP) solver, taking the expert trajectory as the reference line
and the perturbed current ego states as initial conditions.
However, no performance improvement is observed.

4. Conclusion

In this paper, we have presented an imitation learning
method for autonomous driving planning. We have applied
data augmentation and post-processing techniques to mit-
igate issues observed in the closed-loop challenge. Our
method has proven effective, achieving 3rd place in the 2023
Autonomous Driving Challenge - Track 4 Nuplan Planning.

References
[1] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauf-

feurnet: Learning to drive by imitating the best and synthesiz-
ing the worst. arXiv preprint arXiv:1812.03079, 2018. 1

[2] Holger Caesar, Juraj Kabzan, Kok Seang Tan, Whye Kit
Fong, Eric Wolff, Alex Lang, Luke Fletcher, Oscar Beijbom,
and Sammy Omari. nuplan: A closed-loop ml-based plan-
ning benchmark for autonomous vehicles. arXiv preprint
arXiv:2106.11810, 2021. 1

[3] Jiyang Gao, Chen Sun, Hang Zhao, Yi Shen, Dragomir
Anguelov, Congcong Li, and Cordelia Schmid. Vectornet:
Encoding hd maps and agent dynamics from vectorized rep-
resentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 11525–11533,
2020. 1

[4] Junru Gu, Chen Sun, and Hang Zhao. Densetnt: End-to-end
trajectory prediction from dense goal sets. In Proceedings of
the IEEE/CVF International Conference on Computer Vision,
pages 15303–15312, 2021. 1

[5] Nigamaa Nayakanti, Rami Al-Rfou, Aurick Zhou, Kratarth
Goel, Khaled S Refaat, and Benjamin Sapp. Wayformer:
Motion forecasting via simple & efficient attention networks.
arXiv preprint arXiv:2207.05844, 2022. 1, 2

[6] Balakrishnan Varadarajan, Ahmed Hefny, Avikalp Srivastava,
Khaled S Refaat, Nigamaa Nayakanti, Andre Cornman, Kan
Chen, Bertrand Douillard, Chi Pang Lam, Dragomir Anguelov,
et al. Multipath++: Efficient information fusion and trajectory
aggregation for behavior prediction. In 2022 International
Conference on Robotics and Automation (ICRA), pages 7814–
7821. IEEE, 2022. 1, 2

4


	. Introduction
	. Method
	. Input Feature
	. Model
	. Data Augmentation
	. Post Processing

	. Experiment
	. Implementation Details
	. Main Results

	. Conclusion

