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Abstract
In this report, we present CarLLaVA, a Vision Language

Model (VLM) for autonomous driving, developed for the
CARLA Autonomous Driving Challenge 2.0. CarLLaVA
uses the vision encoder of the LLaVA VLM and the LLaMA
architecture as backbone, achieving state-of-the-art closed-
loop driving performance with only camera input and with-
out the need for complex or expensive labels. Additionally,
we show preliminary results on predicting language com-
mentary alongside the driving output. CarLLaVA uses a
semi-disentangled output representation of both path pre-
dictions and waypoints, getting the advantages of the path
for better lateral control and the waypoints for better lon-
gitudinal control. We propose an efficient training recipe to
train on large driving datasets without wasting compute on
easy, trivial data. CarLLaVA ranks 1st place in the sensor
track of the CARLA Autonomous Driving Challenge 2.0 out-
performing the previous state-of-the-art by 458% and the
best concurrent submission by 32.6%.

1. Introduction
The trend in autonomous driving is shifting towards end-to-
end solutions, showed by recent advances in industry [32]
and the state-of-the-art performance on the CARLA Leader-
board 1.0 [6, 15, 26, 29, 38]. Most of the top-performing
entries on the CARLA Leaderboard 1.0 [1] rely on expen-
sive LiDAR sensors, with the exception of TCP [38], which
employs a camera-only approach. Additionally, multi-task
learning has emerged as a common strategy for enhancing
performance [9]. However, this requires access to labels,
such as BEV semantics, depth, or semantic segmentation,
which are expensive to obtain in the real world. This makes
it hard to transfer insights from research using simulators to
real world driving in a scalable and cost-efficient way. Car-
LLaVA in contrast only relies on commonly available and
easy to obtain driving data such as camera images and driv-
ing trajectory and is a camera only method.
Additionally, most state-of-the-art CARLA methods use
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ResNet-style backbones pretrained on ImageNet [15, 26,
29, 38]. However, recent progress in pretraining techniques,
such as CLIP [23], MAE [13], and DINO, have demon-
strated the advantages of using Vision Transformers (ViTs)
[30] over traditional CNN-encoders for improved feature
learning. Moreover, state-of-the-art VLMs [8, 17, 20] that
fine-tune the CLIP encoder exhibit nuanced image under-
standing, indicating the existence of strong vision features.
CarLLaVA makes use of this by using the vision encoder
of LLaVA-NeXT [19–21] which is pre-trained on internet-
scale vision-language data. While the size of modern VLMs
could be viewed as a concern for inference time when de-
ployed on real vehicles, several recent works showed that
this is a solvable engineering problem [2, 3, 34].
In this technical report, we describe the details of our driv-
ing model CarLLaVA, which includes the following prop-
erties and advantages: Camera only without expensive
labels: Our method only uses camera input, eliminating
the need for additional expensive labels such as Bird’s
Eye View (BEV), depth, or semantic segmentation. This
label-free approach reduces dependency on extensive la-
beled datasets, making deployment on real cars more fea-
sible. Vision-Language Pretraining: Our approach lever-
ages a vision encoder pre-trained on internet-scale vision-
language data. We demonstrate that this pretraining can be
effectively transferred to the task of driving, resulting in
improved driving performance compared to training from
scratch on driving data. High-resolution input: We no-
ticed that the default resolution of the CLIP vision encoder
is not sufficient for quality driving. Similar to LLaVA[21],
we split input images into patches to allow the VLM ac-
cess smaller details in the driving images such as distant
traffic lights and pedestrians. In contrast to LLaVA we
do not use the small resolution global patch to reduce the
number of tokens. Efficient Training Recipe: We pro-
pose an efficient training recipe that makes more use of
interesting training samples, significantly reducing train-
ing time. Semi-Disentangled Output Representation: We
propose a semi-disentangled representation with both time-
conditioned waypoints and space-conditioned path way-
points, leading to better control.
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Figure 1. CarLLaVA base model architecture. (C1T1) The im-
ages are split in two, and each split is independently encoded and
then concatenated, downsampled and projected into a pre-trained
large language model. The output utilises a semi-disentangled
representation with both time-conditioned waypoints and space-
conditioned path waypoints for improved lateral control.

2. Method

In the following sections, we provide a comprehensive
overview of our architecture and training methodology.
Task. The objective is to reach a specified target location
on a 10x10 km2 map while passing predetermined inter-
mediate target points. The map includes diverse environ-
ments such as highways, urban streets, residential areas, and
rural settings, all of which must be navigated under var-
ious weather conditions, including clear daylight, sunset,
rain, fog, and nighttime scenarios. Along the way the agent
must manage various complex scenarios such as encounter-
ing pedestrians, navigating parking exits, executing unpro-
tected turns, merging into ongoing traffic, passing construc-
tion sites or avoiding vehicles with opening doors.
Architecture. An overview of our base architecture can be
seen in Fig. 1.
Input/Output Representation. The model inputs include
camera images, the next two target points, and the ego
vehicle’s speed. We tested several configurations: (1)
the base model (C1T1) with a single front view image,
(2) the temporal model (C1T2) which includes image fea-
tures from the previous timestep, and (3) the multi-view
model (C2T1) which adds a low-resolution rear-view cam-
era to the high-resolution front view. For the output,
we use a semi-disentangled representation with both time-
conditioned waypoints with a PID controller for longitudi-
nal control and space-conditioned path waypoints with a
PID controller for lateral control. Early experiments with
entangled waypoints led to steering errors, especially dur-

ing turns or when swerving around obstacles. By using
path waypoints, we achieve denser supervision, as we also
predict the path when the vehicle is stationary, leading to
improved steering behaviour. For longitudinal control we
use standard time-conditioned waypoints to make use of the
better collision avoidance compared to directly predicting
control [37]. We also experimented with target speed clas-
sification and GRUs, but these methods did not perform as
well, although we lack official performance metrics.
HD-Vision Encoder. To encode the camera images, we
use the LLaVA-NeXT vision encoder, specifically the
CLIPViT-L-336px model, which is the highest resolution
trained CLIP model. High-resolution images are crucial
for driving because important information, such as traffic
lights at large intersections, may only be visible in a few
pixels. To leverage CLIP pre-training at higher resolutions
than 336x336, we use LLaVA’s anyres technique [21]. We
divide high-resolution images into multiple large patches of
up to 336x336 pixels, encoding each independently, and
then concatenating the resulting features in spatial dimen-
sion to form a single large feature map for the original im-
age. Using a VLM not only provides strong features, but
also offers the advantage of easily query the VLM to iden-
tify what information are captured in the image features.
More specifically, we queried the VLM for example for the
state of traffic lights at different input resolutions to deter-
mine the optimal resolution and therefore the number of
patches.
Adapter. To reduce computation overhead due to the na-
ture of the quadratic complexity of the LLaMA transformer,
we downsample the feature map to half the number of to-
kens. After flattening, we employ a linear projection layer
to map the vision features to the embedding space of the
language model. To encode the target points and ego speed,
we utilize a multi-layer perceptron (MLP) following a nor-
malization layer. Additionally, we add camera encodings
for the different views (model C2T1) and temporal encod-
ings when using images from multiple time steps (only for
model C1T2).
LM-Decoder. We use the LLaMA architecture as a de-
coder. In addition to the sensor input tokens, we use learn-
able queries to generate the path and waypoints. An MLP
on top of the output features generates waypoint differ-
ences. The cumulative sum of these differences yields the
final waypoints, which are supervised during training using
mean squared error (MSE) loss. For our preliminary results
on generating language explanations we auto-regressively
sample the language explanation after generating the path
and waypoints. During training we feed the tokenized ex-
planations and use a standard language modelling (LM)
loss. We use the tokenizer and LM-head of the pretrained
Tiny-LLaMA model.
Efficient training of large models. Our models have
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between 350M and 1.3B parameter. To finetune these
large models on our task we rely on models pretrained on
internet-scale data, a large dataset and an efficient training
recipe which is described in the following.
Dataset We utilize the privileged rule-based expert PDM-
light [4] to collect a dataset. We divide the official CARLA
routes of Town 12 and Town 13 into shorter segments cen-
tered around scenarios to reduce trivial data (e.g., driv-
ing straight without any hazardous events) and simplify
data management. We use short routes with a single sce-
nario as proposed by[9, 18], however with the introduction
of Leaderboard 2.0, the maximum distance between target
points increased from 50 meters to 200 meters. The short
routes often fall within this distance, causing a distribution
shift, as the next target point is the end of the route (i.e,
closer than 200m) rather than the position that would be
used when having long routes. Consequently, we employ
a second set of routes featuring three scenarios per route.
To ensure balance, we adjust the number of routes per sce-
nario and apply random weather augmentation and modify
the parameter distance for scenarios by ±10%. Overall, we
collect 2.9 million samples at 5 fps.
For the language generation experiment we use the logic of
the rule-based expert to generate explanations. More pre-
cisely, we use the leading object obtained from the experts’
Intelligent Driver Model (IDM)[33] as well as information
about changing the path to swerve around objects. In addi-
tion, we use heuristics based on the ego waypoints to distin-
guish between driving intentions like starting from stop or
keep driving at the same speed. As this experiment is only
intended to showcase the potential of using LLMs for driv-
ing, we do not add detailed statistics of the obtained labels
and keep it for future work.
Buckets. The majority of driving involves straight, unevent-
ful segments. To maximize the collection of interesting sce-
narios during data collection, we focus on capturing a di-
verse range of challenging situations. However, some ratio
of easy and uneventful data is inevitable. Training models
on the entire dataset revealed that straight driving without
hazards is effectively learned in the early epochs, resulting
in wasted compute in later epochs as the models continue
to train on these uninteresting samples. To address this is-
sue, we create data buckets containing only the interesting
samples and sample from these buckets during training in-
stead of the entire dataset. We use: (1) five buckets for
different amount of acceleration and deceleration with one
specifically for starting from stop, excluding samples with
acceleration between -1 and 1, (2) two buckets for steering,
excluding samples for going straight, (3) three buckets for
vehicle hazard with vehicles coming from different direc-
tions, (4) one for stop sign, red light and walker hazards
each, (5) one bucket for swerving around obstacles and (6)
one bucket that samples from the whole dataset to keep a

Method Sensors Aux. Labels DS ↑ RC ↑ IS ↑

M
ap

CaRINA modular L+C+M OD 1.14 3.65 0.46
greatone undisclosed undisclosed 2.17 10.78 0.37
Kyber-E2E L+C+R+M IS, OD 3.47 8.48 0.50
TF++ L+C SS, D, OD, BS 5.56 11.82 0.47

Se
ns

or

CARLA priv. priv. 0.25 15.20 0.10
Zero-shot TF++ L+C SS, D, OD, BS 0.58 8.53 0.38
CaRINA hybrid L+C IS, OD 1.23 9.56 0.31
TF++ L+C SS, D, OD, BS 5.18 11.34 0.48
CarLLaVA (ours) C - 6.87 18.08 0.42

Table 1. Leaderboard 2.0 Results. CarLLaVA achives state-
of-the-art performance on the leaderboard. Legend: L: Lidar, C:
Camera, R: Radar, M: Map, priv: privileged, OD: Object Detec-
tion (3D position and pose), IS: Instant Segmentation, SS: Seman-
tic Segmentation, D: Depth, BS: BEV semantics.

small portion of uneventful data such as driving straight.
This approach reduces the number of samples per epoch to
650,000.

3. Experiments

Benchmarks. Leaderboard2.0. We use the official test
server with secret routes under different weather conditions.
10xShort. For the models where we could not get Leader-
board results, we use a local evaluation on short routes with
one scenario per route to evaluate the models ability to solve
each scenario type. We use maximum 10 routes per scenario
which are randomly sampled from the whole set.
Metrics. We report the official CARLA metrics, Driving
Score (DS), Route Completion (RC) and Infraction Score
(IS). DS is calculated in a way that the reduction due to
infractions does not linearly correlate with the increase in
DS due to higher RC (i.e., with a constant infraction per km
the DS gets much worse for higher RC for models that can
solve the scenarios below a certain percentage). Forcing the
agent to stop a route early can maximize DS.
Implementation Details. We refer to the supplementary
for implementation details.
Results. Leaderboard state of the art. We present the of-
ficial Leaderboard results in Tab. 1. With our base-model
CarLLaVA C1T1 we outperfrom the state of the art (5.18
vs 6.87 DS). However, we observed a high variance on the
Leaderboard score, detailed results on mean and standard
deviation can be found in the supplementary (the official
Leaderboard numbers are our first submissions of the mod-
els, the repetitions to calculate mean and std happened after
the challenge deadline). It is also noteworthy that, to the
best of our knowledge, our model is the only model on the
leaderboard working only with camera images and without
the usage of additional auxiliary labels (note: for the new
entry greatone we do not know what their method is).
Output representation. Tab. 2a compares the DS on the
Leaderboard for the different output representations. As the
goal of the additional path prediction is improved lateral
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DS ↑ Stat ↓

WPs 3.21 0.68
+Path 4.49 0.0

(a) Output.

DS ↑

LLaVA 6.87
- pretraining 0.45
Resnet-34 2.71

(b) Vision encoder.

DS ↑

1300 3.93
1800 4.49
2100 6.87
2400 6.35

(c) Early stopping.

Table 2. Ablations of different parts of our model, showcasing the superiority of the semi-disentangled output representation and the large
impact of the correct threshold for early stopping. The score of the default configuration is highlighted in gray. All numbers are official
Leaderboard scores.

control, we also report the collisions with static layout as
this is mainly caused due to bad steering. With the semi-
disentangled representation we can reduce the layout colli-
sion from 0.68 to 0.0 showcasing the strength of additional
path predictions.
Vision-Language and CLIP pretraining. We ablate the pre-
training of the vision encoder and train the same model
from scratch. Tab. 2b ’-pretraining’ shows that the pretrain-
ing stage is essential for good driving performance (more
tuning of the training hyperparameters can further improve
the performance but is unlikely to reach the performance of
the pretrained model). Additionally, we show a compari-
son to the widely used Resnet-34 pretrained on ImageNet.
The decreased performance (2.71 vs. 6.87 DS) indicates the
importance of the larger ViT and the internet-scale image-
language pretraining.
Early stopping. We ablate the thresholds for the early stop-
ping as it is not trivial to calculate the perfect trade-off as the
routes and density of scenarios are secret (however a rough
function of the expected DS can be caluculated which we
used to get a rough idea). Tab. 2c shows the Leaderboard
DS for a given travelled distance in meters. This hyperpa-
rameter has a big impact on the final score.
Preliminary Results. In addition to our ablations we show
preliminary results to showcase the potential to extend to
multiple views and temporal input as well as scaling our
base model. Detailed results can be found in the supplemen-
tary. Language explanations. With the additional language
training our model is able to produce commentary that com-
ments the current driving behaviour (Fig. 2). This is not
intended as an actual explanation as the training misses an
important grounding step (i.e., commentary is not always
aligned with the actions the model takes). We leave this for
future work.
Failure cases. The most common failure cases of our model
are rear end collision, which can be reduced by using the
temporal input of the C1T2 model and maneuver like merg-
ing especially in high speeds.

4. Conclusion
In this report, we present CarLLaVA the winning entry
in the CARLA Autonomous Driving Challenge 2.0 2024,
which leverages vision-language pretraining and uses only
camera images as input. By utilizing a semi-disentangled
output representation and an efficient training approach,

The ego vehicle is waiting for a gap in the traffic before 
changing lanes to the lane with oncoming traffic to go around
the construction site.

The ego vehicle is changing to the oncoming lane to go around 
the construction site, because the gap is large enough.

The ego vehicle remains stopped due to a pedestrian crossing 
its path.

Figure 2. Qualitative examples of generated language. Red:
predicted path, Green: predicted waypoints, Blue: Target Points

CarLLaVA demonstrates superior performance in both lat-
eral and longitudinal control. Its ability to operate without
expensive labels or sensors makes it a scalable and cost-
effective solution. The results indicate a substantial im-
provement over previous methods, showcasing the potential
of vision-language models in real-world autonomous driv-
ing applications.
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APPENDIX

A. Related Work

Foundation models for driving. Recently, large language
models (LLMs) have been integrated into driving systems
to leverage their reasoning capabilities for addressing long-
tail scenarios. Multi-modal LLM-based driving frameworks
such as LLM-Driver [7], DriveGPT4 [39], and DriveLM
[31] utilize foundation models with the inputs from dif-
ferent modalities for driving. GPT-Driver [22] and Lan-
guageMPC [24] fine-tune ChatGPT as a motion planner us-
ing text. Knowledge-driven approaches [12, 36] are also
adopted to make decisions based on common-sense knowl-
edge and evolve continuously. However, most of these
works have been evaluated primarily through qualitative
analysis or in open-loop settings. The most similar works
leveraging foundation models for closed-loop driving in
CARLA are DriveMLM [35] and LMDrive [27], which uti-
lize multi-modal LLMs. However, these approaches rely on
image and LiDAR inputs with customized encoders, with-
out leveraging the power of vision-language pretraining and
focused on tasks like intruction following. In comparison
we focus on pure closed-loop driving performance to pro-
vide a baseline that can solve basic driving behaviors to en-
able future research on VLMs for driving.

End-to-end closed-loop driving in CARLA. End-to-end
training based on Imitation Learning (IL) is the domi-
nant approach for state-of-the-art methods on the CARLA
Leaderboard 1.0 [5, 15, 25, 37]. Those methods are mostly
incorporate numerous auxiliary outputs and rely on expen-
sive sensors like LiDAR. In contrast, we build a model that
only relies on camera images and the driving trajectory.
The dominant output representation is predicting waypoints
with a GRU and using PID-controllers for lateral and lon-
gitudinal control [5, 10, 15, 16, 25, 28, 37, 40]. TCP [37]
showed that waypoints perform poorly in turns, but predict-
ing direct control performs worse in avoiding collisions.
They propose a situation-based fusion strategy of those
representations. Interfuser [25] proposed predicting path
waypoints together with a combination of forecasting and
heuristics to obtain control. TF++ [15] uses path waypoints
for lateral control and target speed classes for longitudinal
control. In our work we leverage the path representation for
improved steering together with the standard waypoints for
longitudinal control avoiding heuristics or the need for pre-
defined classes. Additionally directly predict the waypoints
from the output features of the transformer without using
GRU.

DSS ↑

50M 90.40
350M 92.49
1B pt LoRA 90.03
1B s LoRA 89.57

(a) Scale.

DSS ↑

default 90.40
+ temporal 90.37
+ back 88.81
- pretraining 75.43

(b) Input.

Table A.1. Further ablations of different parts of our model. The
score of the default configuration is highlighted in gray. DSS is
performance on the 10xShort benchmark.

B. Implementation Details
We use a learning rate of 3e-5 with a cosine annealing
schedule. The batch size of our base model is 20, while for
specific configurations, we use a batch size of 10 for C1T2
and a batch size of 12 for C2T1. The AdamW optimizer is
employed with a weight decay of 0.1. Our vision encoder
consists of 305 million parameters. We experiment with the
LLaMA architecture in three configurations: LLaMA-50M,
LLaMA-350M (both trained from scratch), and a 1B TinyL-
LaMA with LoRA finetuning [14], applied to all linear lay-
ers as demonstrated to be effective by QLoRA [11]. We
apply the same data augmentation techniques as TF++ [15]
but with more aggressive shift and rotation augmentation
(shift: 1.5m, rot: 20 deg). Additionally, we add histogram
enhancements to improve the contrast and quality of input
images for night time driving. DeepSpeed v2 is utilized
for optimizing training efficiency and memory usage. We
train for 30 epochs. Our base model, C1T1, trains in ap-
proximately 27 hours using 8xA100 40GB GPUs. During
inference we apply early stopping to counter the nature of
DS described in the metric section. We track the travelled
distance and stop driving after a specified distance when
the steering angle is close to zero to prevent stopping in the
middle of an intersection where it could happen that other
vehicles crash into us.

C. Additional ablations
Leaderboard variance. We submitted our base model Car-
LLaVA C1T1 with an early stopping threshold of 2100 and
2400 three times to the leadboard to get an estimate of the
evlauation variance. For the 2100 model we obtain the fol-
lowing scores: 5.5, 6.8 and 5.3 resulting in a mean DS of
5.87 with a standard deviation of 0.81. The base model with
a threshold of 2400 obtained 6.3, 6.3 and 4.8 resuting in a
mean of 5.8 with standard deviation of 0.87.
Scale. In an additional experiment we scale up the LLaMA
architecture (Tab. A.1a). Training a 350M parameter model
from scratch improves performance slightly. However scal-
ing to 1B parameter and finetuning with LoRA resulted in
worse performance for using a pretrained LLM (pt) and
training from scratch (s). We suspect that this may be due
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to the use of LoRA finetuning and not fully tuned hyperpa-
rameters, but further investigation is needed. This remains
an interesting research question for future work.
Extending the input. To be able to fully solve autonomous
driving, information from more than one camera (especially
for camera-only arhcitectures) and temporal information are
needed. In Tab. A.1b we show results for a model with tem-
poral information and one with added back camera. Quali-
tative investigations showed improvements in the expected
scenarios (less rear-end collisions for +temporal and im-
proved lane-change behaviour for +back). Interestingly the
overall score does not increase.
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