
Hidden Biases of End-to-End Driving Datasets

Julian Zimmerlin Jens Beißwenger Bernhard Jaeger Andreas Geiger Kashyap Chitta
University of Tübingen Tübingen AI Center

zim.julian@gmail.com, jensbeiswenger@gmail.com

{bernhard.jaeger, kashyap.chitta, a.geiger}@uni-tuebingen.de

Abstract

End-to-end driving systems have made rapid progress,
but have so far not been applied to the challenging new
CARLA Leaderboard 2.0. Furthermore, while there is a
large body of literature on end-to-end architectures and
training strategies, the impact of the training dataset is of-
ten overlooked. In this work, we make a first attempt at
end-to-end driving for Leaderboard 2.0. Instead of investi-
gating architectures, we systematically analyze the training
dataset, leading to new insights: (1) Expert style signifi-
cantly affects downstream policy performance. (2) On com-
plex driving datasets, frames should not be weighted based
on simplistic criteria such as class frequencies. (3) Instead,
estimating whether a frame changes the target labels com-
pared to previous frames can reduce dataset size without
losing important information. By incorporating these find-
ings, our model ranks first and second respectively on the
map and sensors tracks of the 2024 CARLA Challenge.

1. Introduction
Imitation Learning (IL) for end-to-end autonomous driving
has seen great success in recent work on the CARLA sim-
ulator [4], particularly in the Leaderboard 1.0 setting. A
key ingredient contributing to this success is the inherent
scalability of IL with increased training data, which is now
straightforward to collect on Leaderboard 1.0 as a result of
steady progress in planning algorithms for CARLA [2, 3, 6–
8, 11, 13, 15, 17, 19]. However, with the introduction of
Leaderboard 2.0, driving models now face 38 new complex
scenarios. These often require driving at high speeds, devi-
ating off the center of the lane, or handling unexpected dy-
namic obstacles. The best planning algorithm from Leader-
board 1.0 [8] fails to solve these new scenarios, making it
significantly harder to collect high-quality driving demon-
strations needed for training IL models. As a result, there
are no existing IL based methods for Leaderboard 2.0.

In this work, we present the first attempt at tackling
Leaderboard 2.0 with end-to-end IL. We leverage the re-

cently open-sourced PDM-Lite [1] planner, which can solve
the new Leaderboard 2.0 scenarios, to automatically collect
high quality datasets. To gain insights about the challenges
posed by this new task, we use a simple existing IL model,
TransFuser++ [8], with minimal changes to its architecture
and training objective. Instead, we focus on a critical but
understudied aspect of IL – the training dataset. In partic-
ular, the impact of factors besides dataset scale, such as the
diversity of the training distribution, is nuanced and not yet
well understood. We conduct a systematic analysis of our
driving dataset, leading to multiple new insights.

First, the expert’s driving style, in addition to its per-
formance, significantly influences its suitability for IL. To
develop an effective expert, it is important to base the ex-
pert’s behavior on signals that are easily observable and in-
terpretable by the IL policy, rather than relying excessively
on privileged inputs. This behavior also resembles how hu-
man drivers perceive and react to their environment.

Second, we find the use of frequency-based class
weights, a common approach to facilitate learning of classi-
fication tasks on imbalanced datasets, detrimental for target
speed prediction in autonomous driving. Over-represented
classes do not represent a single "uninteresting" mode of the
data distribution– in contrast, they may contain a mixture of
both uninteresting (e.g., braking while waiting at red lights)
and crucial parts of the dataset (e.g., braking for obstacles).

Finally, we study data filtering as an alternative means
to assigning the importance of frames, by which we reduce
our dataset size by ∼ 50% while maintaining performance.

Based on these findings, we train a model which safely
handles urban driving in diverse scenarios and ranks first on
the map track and second on the sensors track of the 2024
CARLA challenge. Our dataset, code, and pre-trained mod-
els will be made available as a starter kit for the community.

2. Preliminaries
We consider the task of urban navigation along routes with
complex scenarios. Each route is a list of GNSS coordinates
called target points (TPs) which can be up to 200 m apart.
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Figure 1. PDM-Lite [1]. This open-source rule-based planner
solves all 38 scenarios of CARLA Leaderboard 2.0.

Metrics. We use the CARLA online metrics. Our main
metric is the Driving Score (DS) which multiplies Route
Completion (RC) with the Infraction Score (IS). RC is the
percentage of the route completed. IS is a penalty factor at
1.0 that gets reduced multiplicatively for every infraction.
Benchmark. To evaluate agents, Leaderboard 2.0 provides
20 official validation routes on Town13 which on average
are 12.39 km long and contain 93 scenarios. We split them
into short routes, each containing only a single scenario.
This allows for more accurate performance evaluation per
scenario type. After splitting, we sample up to 15 routes
per scenario type without replacement to create the Town13
short benchmark. There are 38 scenario types, but in some
cases, fewer (or no) routes are available, which gives a to-
tal of 400 routes from 36 scenarios in this benchmark. As
the calculation of MinSpeedInfractions is unsuited to short
routes, we exclude them from the IS metric on Town13
short. We reproduce TransFuser++ [8] on this benchmark
using data collected with the PDM-Lite expert [1], which
are summarized in the following. We choose PDM-Lite as it
achieves state-of-the-art DS on the official validation routes.
Unlike other concurrent Leaderboard 2.0 planners [9, 18], it
is also publicly available and possible to modify.

PDM-Lite [1] is a privileged rule-based approach for
collecting data in Leaderboard 2.0 capable of tackling all
38 new scenarios. It consists of six stages (Fig. 1).
• First, it creates a dense path of spatially equidistant points

using the A* planning algorithm, given sparse TPs from
the simulator. For new scenarios that require leaving this
path, a short segment of the route where the scenario will
be spawned is shifted laterally towards an adjacent lane.

• It forecasts dynamic agents for 2s into the future, assum-
ing that they maintain their previous controls.

• It selects a leading actor and generates a target speed pro-
posal using the Intelligent Driver Model [16].

• The target speed proposal is converted into an actual ex-
pected sequence of ego-vehicle bounding boxes in closed-
loop by using a kinematic bicycle model.

• Having forecasted all actors, it checks for bounding box
intersections between the simulated ego vehicle and other
vehicles. It scores the ego vehicle’s motion accordingly:
if it detects an intersection, it rejects the IDM target speed
proposal, and sets the target speed to zero.

• The steering value is estimated with a lateral PID con-
troller, which minimizes the angle to a selected point
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Figure 2. TF++ [8]. This end-to-end imitation learning approach
is the best publicly available baseline for CARLA.

along the path ahead. For the throttle and brake predic-
tions, it employs a linear regression model using features
extracted based on the current speed and target speed.
TransFuser++ [8] is the best-performing open-source

model on Leaderboard 1.0 (Fig. 2). Given sensor inputs,
it predicts a target speed and desired path which are input
to a controller module to drive the vehicle. We require two
changes compared to [8] for compatibility with PDM-Lite:
• Two-hot labels. While the rule-based planner in [8]

uses only 4 different target speed classes up to 8m/s
(28.8km/h), PDM-Lite operates with a continuous range
of target speed values up to 20m/s (72km/h). To solve
target speed regression with a classification module, we
employ two-hot labels [5]. This method converts a con-
tinuous value into a two-hot representation by interpo-
lating between one-hot labels of the two nearest classes.
For instance, with our 8 speed classes ([0.0, 4.0, 8.0,
10, 13.89, 16, 17.78, 20] m/s), a target speed of 3.0m/s
is represented as [0.25, 0.75, 0, 0, 0, 0, 0, 0]. These speed
classes were selected by analyzing the distribution of tar-
get speeds chosen by PDM-Lite in our dataset.

• Dynamic lookahead controller. For stable lateral con-
trol at the high speeds required by Leaderboard 2.0, it is
advantageous to adjust the distance of the point selected
to follow along the ego vehicle’s predicted path based on
the current speed. TF++ predicts a set of 10 checkpoints,
each spaced 1m apart, with the first checkpoint located
2.5 meters from the vehicle center. The distance of the
checkpoint to which the lateral controller minimizes the
angle is determined by the formula d = (0.097v+0.692),
where v is the ego’s speed in km/h. We round down to
the nearest available predicted checkpoint. This scaling
ensures that at low speeds, the controller selects a closer
point, facilitating tight turns, while at high speeds, it se-
lects a distant point, resulting in more stable steering.
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Figure 3. Expert style compared on the same route. The default
PDM-Lite brakes early (left), when the pedestrian is hardly visible
in the image, while the adjusted expert brakes later (right).

3. Hidden Biases

Expert style. While expert performance is often reported
in prior work, the manner in which it achieves that per-
formance, i.e., expert style, is often overlooked. Although
harder to quantify, it is an important aspect to consider for
IL. For instance, consider PDM-Lite’s behavior when ap-
proaching pedestrians (Fig. 3). By default, it addresses this
scenario by slowing down when the pedestrian is predicted
to enter the driving path. However, at this point, the pedes-
trian is usually still obstructed by a parked vehicle. With our
adjusted IDM parameters, the expert brakes rather sharply
instead, coming to a stop at a distance of roughly 4 meters
in front of the more visible pedestrian. This leads to a ∼ 4×
decrease in pedestrian collisions for models trained on the
adjusted expert data. Notably, this update does not affect the
expert’s own pedestrian collision rate. The improvement is
likely due to the adjusted behavior providing a clear brak-
ing signal for the model to learn from (a pedestrian directly
in front of the ego vehicle), whereas the default behavior
requires the model to generalize across various situations
where a pedestrian might appear further ahead.
Target speed weights. Training TF++ involves using class
weights in a target speed classification loss, which are cal-
culated anti-proportionally to the number of occurrences
of the respective class in the dataset [8]. This means that
classes that appear frequently get a lower weight than those
that appear rarely. We find that removing these weights sig-
nificantly improves the performance of TF++ on our task
(Table 1). We believe this is due to the weight of class 0
(braking), the most common in the dataset. While some
part of the data for class 0 is redundant (e.g., waiting at red
lights), some frames are among the most crucial for avoid-
ing infractions, such as coming to a stop in front of stop

signs or pedestrians. With a low weight on the target speed
loss for these frames, ignoring short braking phases in these
situations is an easy shortcut for the model to fall into.

Speed Weights DS↑ RC ↑ IS ↑

✓ 82 ± 1 98 ± 0 0.83 ± 0.01

✗ 85 ± 0 99 ± 0 0.85 ± 0.00

Table 1. Speed weights. Results on Town13 short, reported over
3 training seeds. Weights: [0.29, 1.30, 0.69, 0.81, 4.43, 4.76, 3.90,
2.41] for the speeds [0.0, 4.0, 8.0, 10, 13.89, 16, 17.78, 20] m/s.

Data filtering. As an alternative to measure importance
of frames, we propose the use of heuristics that estimate
whether a frame changes the model’s target labels compared
to previous frames. More precisely, we keep all frames that
change the target speed by more than 0.1m/s, or the angle
to any of the predicted path checkpoints by more than 0.5°
compared to the previous frame (4̃0% of all frames). Addi-
tionally, we randomly retain 14% of the remaining frames
and discard the rest, for a total filtered dataset containing
51% of all available frames. We then train with 2× the num-
ber of epochs to keep the total number of gradient updates
similar. In Table 2, we present the results of our proposed
filtering strategy on the official Leaderboard. Our result on
the sensors track (5.2 DS) is from a model without filtering,
while the result on the map track (5.6 DS) is with filter-
ing. By reducing the dataset size by 49%, with slightly im-
proved performance, we show that our heuristic effectively
removes redundant frames without losing information.

Model DS ↑ RC ↑ IS ↑

LRM [14] 1.2 9.6 0.31
Kyber-E2E [18] 3.5 8.5 0.50
CarLLaVA 6.9 18.1 0.42

TF++ (no filtering) 5.2 11.3 0.48
TF++ (w/ filtering) 5.6 11.8 0.47

Table 2. Filtering improves scores on CARLA Leaderboard
2.0. Secret test routes (Town 14). TF++ (Ours) outperforms prior
modular pipelines [14, 18], and places 2nd overall.

4. Additional Experimental Details

Training dataset. The CARLA team provides 90 training
routes on Town12 with a total length of 780.6km. We split
the training routes into smaller routes containing one sce-
nario each. The scenario distribution is shown in Figure
4. We sample from these routes with replacement to ob-
tain a set of 50 routes per scenario, on which we collect a
training dataset using our expert driver (198k frames). The
dataset contains RGB images with a resolution of 384x1024
pixels, LiDAR point clouds, and the training labels needed



Figure 4. Scenario distribution in the available long routes.

for TF++ (path checkpoints, expert target speed, and aux-
iliary labels such as BEV semantics and vehicle/pedestrian
bounding box predictions). Additionally, we collect data on
Towns 01-05 and 10, which contain the six scenarios from
Leaderboard 1.0 (139k frames), for a total of 337k frames.
For the models in Table 2, we also include training data
from the provided validation routes on Town13 (20 routes,
total length 247.6km, again upsampled to 50 routes per sce-
nario), adding 194k frames (531k in total).
Implementation. We use a cosine annealing learning rate
schedule [10] with lr0 = 3 · 10−4, T0 = 1, Tmult = 2 and
train our models for 31 epochs. We train each model on four
A100 GPUs with a total batch size of 64, which takes 2-3
days depending on the architecture. Models marked with:
• "Big" use the default regnety_032 [12] architecture of

TF++ for the image and LiDAR perception modules in-
stead of ResNet34 used in our "Base" setting.

• "Pre" use two-stage training, where we first pre-train ex-
clusively with perception losses (BEV semantics, bound-
ing boxes, image depth, image semantics) for 15 epochs,
before training for 31 epochs with all losses.

• "Ens" are ensemble models, averaging predictions from 3
models trained with different random seeds.

Ablations. In Table 3, we present a number of ablations and
additional expriments for the "Base" model and compare
to expert performance. Ensembling ("Ens") and two-stage
training ("Pre") provide small improvements. To react bet-
ter to vehicles that are further away, we extend the LiDAR
range in front of the ego to 64m from 32m ("L64m"). This
also resulted in a small improvement, but we do not use it
in our leaderboard submissions. Giving the next two target
points as input instead of only one ("2TPs") fails to increase
performance. Our final models (used in Table 2 and Table 4)
combine the benefits of "Big", "Pre", and "Ens".
Early termination. It can be beneficial to stop an agent
preemptively, reducing RC and increasing IS to improve
DS. We formulate the expected DS of an agent as 100xIxL

where x ∈ [0, 1] is the fraction of the route that the agent
completes, L is the route length, and I = 0.5CP ∗ 0.6CV ∗
0.65CL ∗ 0.7RL ∗ 0.8SI ∗ 0.7ST ∗ 0.7Y E is the expected
infraction coefficient per km, including all non-negligible
infraction types. Maximizing this function, we obtain the

Setting DS ↑ RC ↑ IS ↑

Base 85 ± 0 99 ± 0 0.86 ± 0.00

Big 85 ± 1 98 ± 1 0.86 ± 0.01

Pre 87 ± 1 98 ± 0 0.87 ± 0.01

Ens 86 98 0.87
L64m 86 97 0.87
2TPs 82 96 0.85

Expert 99 100 0.99

Table 3. Results on Town13 short. Std over 3 training seeds
where available. Training on Towns 01-05, 10, 12 (337k frames).

solution x = −(L log I)−1. A model profits from early ter-
mination if x < 1, i.e. I < 0.907. With L = 10.295 (mean
length of test routes) and I = 0.43 (estimated on validation
routes), we obtain x = 0.115. Thus, our model should the-
oretically stop at d = xL = 1.18km to maximize expected
DS. Since I and L are only estimates, we set target speed
to 0 after d = 1.5km in practice. We track distance trav-
eled using the agent’s speed sensor. Early termination has
a significant effect on the scores obtained on long Town13
validation routes, as shown in Table 4. As Table 2 shows,
all good submissions to the Leaderboard 2.0 test server have
less than 18.1 RC, which implies that all these methods use
a variant of early termination either explicitly or implicitly.

Early termination DS↑ RC ↑ IS ↑

✗ 0.70 70.1 0.04
✓ 4.81 8.0 0.59

Table 4. Early termination after 1km on the 20 validation routes.

5. Discussion
In repeated Leaderboard submissions, we observed signifi-
cant variance in DS, with identical submissions yielding re-
sults that differ by more than 1DS. In addition, as shown in
Table 4, DS is influenced significantly by early termination
on long routes, which does not reflect any actual improve-
ment in driving behavior. Our formula offers a way to com-
pute an appropriate driving distance for the test server, how-
ever, it is necessary to consider results from other bench-
marks before drawing conclusions based on DS.
Conclusion. With a systematic analysis of training dataset
biases for end-to-end driving in CARLA, we reveal the sig-
nificant impact of expert style on IL policy performance.
We further provide insights into the challenges of assigning
importance to frames through weighting or filtering, and
provide a simple and effective heuristic that estimates im-
portance based on changes in target labels. We reproduce
TransFuser++ in the Leaderboard 2.0 setting, providing the
first recipe for training an end-to-end driving system that at-
tains non-trivial performance. We hope this can serve as a
starting point for future research on this benchmark.
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