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Abstract

We propose Hydra-MDP, a novel paradigm employing
multiple teachers in a teacher-student model. This approach
uses knowledge distillation from both human and rule-based
teachers to train the student model, which features a multi-
head decoder to learn diverse trajectory candidates tailored
to various evaluation metrics. With the knowledge of rule-
based teachers, Hydra-MDP learns how the environment
influences the planning in an end-to-end manner instead of
resorting to non-differentiable post-processing. This method
achieves the 1% place in the Navsim challenge, demonstrat-
ing significant improvements in generalization across diverse
driving environments and conditions.

1. Introduction

End-to-end autonomous driving, which involves learning a
neural planner with raw sensor inputs, is considered a promis-
ing direction to achieve full autonomy. Despite the promising
progress in this field [11, 12], recent studies [4, 8, 14] have
exposed multiple vulnerabilities and limitations of imitation
learning (IL) methods, particularly the inherent issues in
open-loop evaluation, such as the dysfunctional metrics and
implicit biases [8, 14]. This is critical as it fails to guarantee
safety, efficiency, comfort, and compliance with traffic rules.
To address this main limitation, several works have proposed
incorporating closed-loop metrics, which more effectively
evaluate end-to-end autonomous driving by ensuring that
the machine-learned planner meets essential criteria beyond
merely mimicking human drivers.

Therefore, end-to-end planning is ideally a multi-target
and multimodal task, where multi-target planning involves
meeting various evaluation metrics from either open-loop
and closed-loop settings. In this context, multimodal indi-
cates the existence of multiple optimal solutions for each
metric. Existing end-to-end approaches [4, 11, 12] often
try to consider closed-loop evaluation via post-processing,
which is not streamlined and may result in the loss of addi-
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Figure 1. Comparison between End-to-end Planning Paradigms.

tional information compared to a fully end-to-end pipeline.
Meanwhile, rule-based planners [8, 18] struggle with imper-
fect perception inputs. These imperfect inputs degrade the
performance of rule-based planning under both closed-loop
and open-loop metrics, as they rely on predicted perception
instead of ground truth (GT) labels.

To address the issues, we propose a novel end-to-end
autonomous driving framework called Hydra-MDP (Multi-
modal Planning with Multi-target Hydra-distillation). Hydra-
MDP is based on a novel teacher-student knowledge distil-
lation (KD) architecture. The student model learns diverse
trajectory candidates tailored to various evaluation metrics
through KD from both human and rule-based teachers. We
instantiate the multi-target Hydra-distillation with a multi-
head decoder, thus effectively integrating the knowledge
from specialized teachers. Hydra-MDP also features an ex-
tendable KD architecture, allowing for easy integration of
additional teachers.
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Figure 2. The Overall Architecture of Hydra-MDP.

The student model uses environmental observations dur-
ing training, while the teacher models use ground truth (GT)
data. This setup allows the teacher models to generate better
planning predictions, helping the student model to learn ef-
fectively. By training the student model with environmental
observations, it becomes adept at handling realistic condi-
tions where GT perception is not accessible during testing.

Our contributions are summarized as follows:

1. We propose a universal framework of end-to-end multi-
modal planning via multi-target hydra-distillation, allow-
ing the model to learn from both rule-based planners and
human drivers in a scalable manner.

2. Our approach achieves the state-of-the-art performance
under the simulation-based evaluation metrics on Navsim.

2. Solution
2.1. Preliminaries

Let O represent sensor observations, P and P denote ground
truth and predicted perceptions (e.g. 3D object detection,
lane detection), 7" be the expert trajectory, and 7" be the pre-
dicted trajectory. L;,, represents the imitation loss. We first
introduce the two prevailing paradigms and our proposed
paradigm (Fig. 1) in this section:

A. Single-modal Planning + Single-target Learning. In
this paradigm [11, 12, 14], the planning network directly re-
gresses the planned trajectory from the sensor observations.
Ground truth perceptions can be used as auxiliary supervi-
sion but does not influence the planning output. Perception
losses are not included in the formula for simplicity. The
whole processing can be formulated as:

L= L (T, T), (1)

where L;,, is usually an L2 loss.

B. Multimodal Planning + Single-target Learning. This
approach [1, 4] predicts multiple trajectories {7} }¥_,, whose
similarities to the expert trajectory are computed:

L= Lin(T,T), )

where L;,, can be KL-Divergence [4] or the max-margin
loss [1]. Perception outputs P are explicitly used to post-
process suitable trajectories via a cost function f (7T}, P). The
trajectory with the lowest cost is selected:

T* = argminf(T;, P), 3)

which is a non-differentiable process based on imperfect
perception P.
C. Multimodal Planning + Multi-target Learning. We
propose this paradigm to simultaneously predict various
costs (e.g., collision cost, drivable area compliance cost) via
a neural network f. This is performed in a teacher-student
distillation manner, where the teacher has access to ground
truth perception P but the student relies only on sensor
observations O. This paradigm can be formulated as:

L= Lin(T,T) + Lya /(T P), (T3, 0)). 4

Here, we only consider one cost function f for clarity. The
trajectory with the lowest predicted cost is selected:

T = arg minf(TZ-,O). (5)
T;

We stress that this framework is not restricted by non-
differentiable post-processing. It can be easily scaled in an
end-to-end fashion by involving more cost functions or lever-
aging imitation similarity in our implementation (Sec. 2.4).



2.2. Overall Framework

As shown in Fig. 2, Hydra-MDP consists of two networks: a
Perception Network and a Trajectory Decoder.

Perception Network. Our perception network builds upon
the official challenge baseline Transfuser [5, 6], which con-
sists of an image backbone, a LiDAR backbone, and per-
ception heads for 3D object detection and BEV segmenta-
tion. Multiple transformer layers [19] connect features from
stages of both backbones, extracting meaningful information
from different modalities. The final output of the percep-
tion network comprises environmental tokens Fy,,,, which
encode abundant semantic information derived from both
images and LiDAR point clouds.

Trajectory Decoder. Following Vadv2 [4], we construct a
fixed planning vocabulary to discretize the continuous ac-
tion space. To build the vocabulary, we first sample 700K
trajectories randomly from the original nuPlan database [2].
Each trajectory T;(i = 1,..., k) consists of 40 timestamps
of (z,y, heading), corresponding to the desired 10Hz fre-
quency and a 4-second future horizon in the challenge. The
planning vocabulary Vj, is formed as K-means clustering
centers of the 700K trajectories, where k denotes the size of
the vocabulary. Vy is then embedded as £ latent queries with
an MLP, sent into layers of transformer encoders [19], and
added to the ego status £

V. = Transformer(Q, K,V = Mip(Vy)) + E. (6)
To incorporate environmental clues in Fi,,, transformer
decoders are leveraged:

Vi = Transformer(Q =V, K,V = Fopy,). (1)

Using the log-replay trajectory T, we implement a distance-
based cross-entropy loss to imitate human drivers:

k
Lim ==Y yilog(S™), ®)
1=1

where S{™ is the i-th softmax score of V}/, and y; is the imi-
tation target produced by L2 distances between log-replays
and the vocabulary. Softmax is applied on L2 distances to
produce a probability distribution:
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The intuition behind this imitation target is to reward trajec-
tory proposals that are close to human driving behaviors.

2.3. Multi-target Hydra-Distillation

Though the imitation target provides certain clues for the
planner, it is insufficient for the model to associate the plan-
ning decision with the driving environment under the closed-
loop setting, leading to failures such as collisions and leaving

drivable areas [14]. Therefore, to boost the closed-loop per-
formance of our end-to-end planner, we propose Multi-target
Hydra-Distillation, a learning strategy that aligns the planner
with simulation-based metrics in this challenge.

The distillation process expands the learning target
through two steps: (1) running offline simulations [8] of
the planning vocabulary Vj for the entire training dataset;
(2) introducing supervision from simulation scores for each
trajectory in Vj during the training process. For a given
scenario, step 1 generates ground truth simulation scores
{Smli=1,.., k}‘,fy:ll for each metric m € M and the i-th
trajectory, where M represents the set of closed-loop metrics
used in the challenge. For score predictions, latent vectors
V! are processed with a set of Hydra Prediction Heads, yield-
ing predicted scores {S"|i = 1, ..., k}lﬁi‘l With a binary
cross-entropy loss, we distill rule-based driving knowledge
into the end-to-end planner:

Lya = =3, ;S log 8" + (1= 8" log(1 - §"). (10)
For a trajectory 77, its distillation loss of each sub-score acts
as a learned cost value in Eq. 4, measuring the violation of
particular traffic rules associated with that metric.

2.4. Inference and Post-processing
2.4.1 Inference

Given the predicted imitation scores {S:™|i = 1, ..., k} and
metric sub-scores {S"]i = 1, ..., k}lﬁﬂl, we calculate an
assembled cost measuring the likelihood of each trajectory

being selected in the given scenario as follows:
f(T;,0) = — (w1 log 8™ + w3 log SN 4 w3 log SPAC
+ wylog (58TTC + 289 4+ 58EF)), (1)

where {w;}?_, represent confidence weighting parameters
to mitigate the imperfect fitting of different teachers. The
optimal combination of weights is obtained via grid search,
which typically fall within the following ranges: 0.01 <
wy; < 0.1,0.1 < wy,ws < 1,1 < wy < 10, indicating
the necessity to prioritize rule-based costs over imitation.
Finally, the trajectory with the lowest overall cost is chosen.

2.4.2 Model Ensembling

We present two model ensembling techniques: Mixture of
Encoders and Sub-score Ensembling. The former technique
uses a linear layer to combine features from different vision
encoders, while the latter calculates a weighted sum of sub-
scores from independent models for trajectory selection.

3. Experiments

3.1. Dataset and metrics

Dataset. The Navsim dataset builds on the existing Open-
Scene [7] dataset, a compact version of nuPlan [3] with only



Method \ Inputs | NC DAC EP TTC C |  Score
PDM-Closed [8]o | Perception GT | 946 99.8 89.9 86.9 99.9 | 89.1
Transfuser [5] LiDAR & Camera 96.5 87.9 73.9 90.2 100 78.0
Vadv2-Vaoos [41* LiDAR & Camera 97.1 88.8 74.9 91.4 100 79.7
Vadv2-Vaoos [4]*-PP LiDAR & Camera 97.0 89.1 75.0 91.2 100 79.9
Vadv2-Vg192 [4]* LiDAR & Camera 97.2 89.1 76.0 91.6 100 80.9
Hydra-MDP-V4096 LiDAR & Camera 97.7 91.5 71.5 92.7 100 82.6
Hydra-MDP-Vg192 LiDAR & Camera 97.9 91.7 77.6 929 100 83.0
Hydra-MDP-Vg192-PDM LiDAR & Camera 97.5 88.9 74.8 92.5 100 80.2
Hydra-MDP-Vg192-W LiDAR & Camera 98.1 96.1 7.8 93.9 100 85.7
Hydra-MDP-Vsg1 92-W-EP LiDAR & Camera 98.3 96.0 78.7 94.6 100 86.5

Table 1. Performance on the Navtest Split. © The official Navsim implementation of PDM-Closed is potentially prone to errors due to
inconsistent braking maneuvers and offset formulation compared with the nuPlan implementation [8]. All end-to-end methods use the
official Transfuser [5] as the perception network. * Our distance-based imitation loss is adopted for training. PP: Transfuser perception is
used for post-processing. PDM: The learning target is the overall PDM score. W: Weighted confidence during inference. EP: The model is

trained to fit the continuous EP (Ego Progress) metric.

Method | Img. Resolution Backbone | NC DAC EP TTC C | Score

PDM-Closed [8]¢ ‘ - ‘ 94.6 99.8 89.9 86.9 99.9 ‘ 89.1

Hydra-MDP-A ‘ 256 x 1024 ViT-L* ‘ 98.4 97.7 85.0 94.5 100 ‘ 89.9

Hydra-MDP-B ‘ 512 x 2048 V2-99 ‘ 98.4 97.8 86.5 93.9 100 ‘ 90.3
256 x 1024 ViT-L*

Hydra-MDP-C 256 x 1024 ViT-Li 98.7 98.2 86.5 95.0 100 91.0
512 x 2048 V2-99

Table 2. The Impact of Scaling Up on the Navtest Split. ¢ The official Navsim implementation of PDM-Closed. * ViT-L is initialized from
Depth Anything [20]. ViT-L is EVA [9] pretrained on Objects365 [17] and COCO [15]. V2-99 [13] is initialized from DD3D [16].

relevant annotations and sensor data sampled at 2 Hz. The
dataset primarily focuses on scenarios involving changes in
intention, where the ego vehicle’s historical data cannot be
extrapolated into a future plan. The dataset provides anno-
tated 2D high-definition maps with semantic categories and
3D bounding boxes for objects. The dataset is split into two
parts: Navtrain and Navtest, which respectively contain 1192
and 136 scenarios for training/validation and testing.

Metrics. For this challenge, we evaluate our models based
on the PDM score, which can be formulated as follows:

PDM,eore = NC x DAC x DDC x PXTTCH2XCEXED) - (12)

where sub-metrics NC, DAC, TTC, C, EP correspond to
the No at-fault Collisions, Drivable Area Compliance, Time
to Collision, Comfort, and Ego Progress. For the distillation
process and subsequent results, D DC' is neglected due to an
implementation problem.'.

3.2. Implementation Details

We train our models on the Navtrain split using 8 NVIDIA
A100 GPUs, with a total batch size of 256 across 20 epochs.
The learning rate and weight decay are set to 1 x 10~% and 0.0
following the official baseline. LIDAR points from 4 frames
are splatted onto the BEV plane to form a density BEV fea-
ture, which is encoded using ResNet34 [10]. For images, the
front-view image is concatenated with the center-cropped
front-left-view and front-right-view images, yielding an in-
put resolution of 256 x 1024 by default. ResNet34 is also

Ihttps://github.com/autonomousvision/navsim/issues/14

applied for feature extraction unless otherwise specified. No
data or test-time augmentations are used.

3.3. Main Results

Our results, presented in Tab. 1, highlight the absolute ad-
vantage of Hydra-MDP over the baseline. In our exploration
of different planning vocabularies [4], utilizing a larger vo-
cabulary Vgj9o demonstrates improvements across different
methods. Furthermore, non-differentiable post-processing
yields fewer performance gains than our framework, while
weighted confidence enhances the performance comprehen-
sively. To ablate the effect of different learning targets, the
continuous metric EP (Ego Progress) is not considered in
early experiments and we attempt the distillation of the over-
all PDM score. Nonetheless, the irregular distribution of the
PDM score incurs performance degradation, which suggests
the necessity of our multi-target learning paradigm. In the
final version of Hydra-MDP-Vg192-W-EP, the distillation of
EP can improve the corresponding metric.

3.4. Scaling Up and Model Ensembling

Previous literature [11] suggests larger backbones only lead
to minor improvements in planning performance. Neverthe-
less, we further demonstrate the scalability of our model
with larger backbones. Tab. 2 shows three best-performing
versions of Hydra-MDP with ViT-L [9, 20] and V2-99 [13]
as the image backbone. For the final submission, we use the
ensembled sub-scores of these three models for inference.
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