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Abstract

This report introduces the first-place winning solution for
the Autonomous Grand Challenge 2024 - Mapless Driving
[1]. In this report, we introduce a novel online mapping
pipeline LGmap, which adept at long-range temporal model.
Firstly, we propose symmetric view transformation(SVT),
a hybrid view transformation module. Our approach over-
comes the limitations of forward sparse feature representa-
tion and utilizing depth perception and SD prior information.
Secondly, we propose hierarchical temporal fusion(HTF)
module. It employs temporal information from local to global,
which empowers the construction of long-range HD map
with high stability. Lastly, we propose a novel ped-crossing
resampling. The simplified ped crossing representation ac-
celerates the instance attention based decoder convergence
performance. Our method achieves 0.66 UniScore in the
Mapless Driving OpenLaneV2 test set.

1. Introduction
The High-Definition (HD) map is designed for high-
precision autonomous driving. It contains instance-level vec-
torized representation such as pedestrian crossing, lane di-
vider, road boundaries, etc. The rich semantic information of
road topology and traffic rules is important for the navigation
of autonomous driving. The Mapless Driving Track [2] aims
to dynamically construct a local HD map from the images
of the surrounding camera on board and the SD map. In this
work, we present a multi-stage framework, which decou-
ples the 2D / 3D elements detection and topology prediction
tasks.
Our method focuses mainly on three aspects to handle the
competition.
1. Fusion from close to distant. We propose an innovative

approach that incorporate both forward projection and
backward projection strategies together with SD-map
fusion and depth supervision.
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2. Fusion from local to global. We present an novel online
mapping pipeline adept at both short-range and long-
range, which integrates both streaming strategy and stack-
ing strategy.

3. Ped crossing resampling. We simplify the ped crossing
to 4 corners, and then uniformly sample 6 points on each
edge.

2. Method

This section introduces the details of our method. We first
introduce the main pipeline of the LGmap architecture, as
shown in Fig. 1. Then the area components and lane segment
components are presented. Furthermore, we introduce the
traffic elements. Finally, we describe the attention-based
heads for topology reasoning.

2.1. Pipeline

2.1.1 Encoder

There are mainly two types of view transformation, for-
ward projection and backward projection. Lift-Splat-Shoot
(LSS)[4] takes advantage of the depth distribution to model
the uncertainty of each pixel’s depth. But the drawbacks of
forward projection is discrete and sparse BEV representation.
BEVFormer [5] projects 3D points back onto 2D images.
As a backward projection, one limitation of BEVFormer is
false correlation between 3D and 2D space due to occlu-
sion. To address these issues, we introduce a symmetric view
transformation. The depth-map of each camera is generated
from synchronized lidar point cloud. The LSS utilize depth
supervision only at the training phase. Given the SD map
of the scene, we evenly sample along each of the polylines
for a fixed number of points. With sinusoidal embedding,
BEVFormer apply cross-attention between the SD map fea-
ture representation with features from vision inputs on each
encoder layer. In order to fuse BEV representations, we use
the channel-attention-based fusion module.
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Figure 1. The overall model architecture of LGmap. The entire model is consists of mainly six components: a image backbone equipped
with SVT(Symmetric View Transformation), a hierarchical temporal fusion(HTF) module, a unified instance detection and segmentation
predictor, a traffic elements detector(YOLO [3]), a Lane-Lane Topology(LLT) and a Lane-TE Topology(LTT).

2.1.2 Decoder

In order to handle different map elements with distinct shape
priors, we extend the instance-wise detection decoder with
additional segmentation tasks. The unified transformer-based
decoder for instance detection and segmentation benefits
from both pixel-level classification task and region-level
regression task. Additional segmentation branches accelerate
the convergence performance of the instance-wise feature
embedding.

2.1.3 Temporal fusion

The streaming strategy facilitates longer temporal associa-
tion as the propagated hidden states encode all historical
information. But a temporal fuser such as convGRU [6] may
still face the problem of forgetting. The stacking strategy
may integrate features from specific previous frames, of-
fering flexibility in fusion of long-range information. The
computational cost is linearly related to the number of fused
frames. We propose a novel hierarchical temporal fusion
(HTF). The hierarchical temporal fusion fully leverage local
fusion capability of streaming strategy and long-range fusion
capability of stacking strategy. And it minimizes memory
and latency costs compared to the stacking strategy. Here
we present two variants of HTF, streaming-streaming strat-
egy and streaming-stacking strategy, as shown in Fig. 2.
For streaming-stacking strategy, we random select N frames
from the latest M previous frames for the stacking mode
layer during the training phase. And select N frames by a
certain distance strides during testing phase.

Figure 2. Stacking strategy and streaming strategy are same as
StreamMapNet’s [7] summary. In order to demonstrate the effec-
tiveness of long-range stacking for streaming-stacking strategy in
figure, the stacking previous frame interval parameter is set to 2.
Stacking strategy only fuses one previous frame in this figure, and
actually it may fuse more than one frame.

2.1.4 Loss functions

Firstly, we adopt classification loss, point2point loss and
edge direction loss same as MapTR [8]. Secondly, we adopt
image segmentation auxiliary dense prediction loss and
depth prediction loss same as MapTRv2 [9]. Thirdly, we
adopt BEV instance segmentation loss. Lastly, we adopt
geometric 3D loss. Unlike the geometric loss of GeMap
[10], which ignores the Z-axis, we extend the euclidean loss
dimension from 2d to 3d.



Figure 3. The ped crossing form of MapTR, MachMap and LGmap.

2.2. Area

Inspired by Machmap [11], we simplified the ped crossing
by four corners. Then we unified the four corners into the
MapTR form of N points. The main difference is that MapTR
uses 20 evenly sampled points, MachMap uses 4 points, and
we use 6 points evenly sampled on each edge, as shown in
Fig. 3.

Our ped-crossing representation keeps four corners as
key points, which are essential shape priors. What’s more,
the permutations of ped crossing are simpler than MapTR.
Compared to MapTR’s 40 equivalent permutations of one
20 points polygon, LGmap only requires 8. Instead of point-
wise permutations, we only use corner-wise permutations.
Lastly, preserving corners is beneficial for instance query
embedding.

2.3. Lane segments

Based on the centerline output of the regression branch, an
offset branch is introduced to predict the offset to left and
right lane boundaries, and two classification branches are
introduced to predict the attribute of lane boundary, with
reference to LaneSegNet [2].

2.4. Traffic elements

We utilize YOLOv8 as a base 2D detector, and we utilize
YOLOv9 [3] additionally for model ensemble. Based on the
OpenlaneV2 dataset, we propose a series of data augmen-
tation excluding HSV and horizontal flipping, since these
tricks may lead to confusion of traffic lights and the direction
of traffic signs. The distribution of categories in dataset is
highly imbalanced, some categories differing by an order of
magnitude. Moreover, pseudo-labels, which are generated on
the test set, improve the results. We adopt test-time augmen-
tation(TTA) with the scale range between 0.7-1.4 to improve
both the recall of small-objects and large-objects.

2.5. Lane-Lane topology

We use the TopoMLP method [12]. Firstly, we pass the cen-
terline coordinates to MLP and add them to the refined query
features. Finally, we apply MLP to perform topology classi-
fication.

2.6. Lane-Traffic topology

We use the coordinates of centerlines, and coordinates, cate-
gories from traffic element bboxes. We train topology model

BEVFormer LSS Data-aug mAP%

✓ 40.36
✓ 32.57

✓ ✓ 40.89
✓ ✓ ✓ 43.75

Table 1. Ablation study of SVT on the Openlanev2 val set.

using ground truth data of lane segments and traffic elements,
since the feature embedding are not used. By decoupling
with the upstream detection model, the training and predic-
tion process of topology becomes more convenient. Due to
the complexity of intersections, we use self-attention to fa-
cilitate information exchange among elements and obtain
relative relationships.

3. Experiments

3.1. Implementation details

We build our system based on MapTRv2 codebase [9]. Train-
ing setup. We adopt two data augmentation methods, image
data augmentation and BEV data augmentation, e.g. random
rotating, scaling, cropping and flipping. For ablation study,
we use the ResNet50 [13] pretrained on ImageNet dataset.
And we use ViT-L [14] as the scaling up image backbone.
We pretrain the ViT model on nuScenes dataset with vector-
ized map construction task. For training large-scale models,
we use a batch size of 16 on 16 A800 GPUs, AdamW [15]
optimizer with a learning rate of 6e-4. The layer-wise learn-
ing rate decay is 0.9. Partial freeze block number of ViT is
3. The resolution of input images are 1536× 1536. And the
image features from the backbone are downsampled with
a stride of 16. The depth net predicts depth from 1m to
56m. The BEV feature-map resolution is 100 × 200. We
train the model by two stages. Single-frame mode for 48
epochs and streaming-stacking mode for 36 epochs. During
the temporal fusion mode, we change the partial freeze block
number of ViT to 12. And turn off both image and BEV data
augmentations.

3.2. Ablation Study

3.2.1 SymmetricVT

We examine the efficacy of SVT component through ablation
studies, utilizing the OpenlaneV2 dataset [1]. Starting with
BEVFormer [5] and LSS [4] as baseline, the best score is
40.36% on the validation set, as shown in Table 1. Compared
to the best baseline, the integration of BEVFormer and LSS
increase 0.5% mAP. After adding image data-augmentation
and BEV data-augmentation, the model performance has
improved to 43.75%.



Temporal fusion strategy mAP%

None 52.93
Streaming 56.61
Streaming-streaming 53.49
Streaming-stacking 57.13

Table 2. Ablation study of HTF on the Openlanev2 val set.

Method DET-a%

ins-pt attention 33.6
ins attention 34.05
ins attention + ped crossing resampling 35.42

Table 3. Ablation study of ped crossing resampling on the Open-
lanev2 val set. The ins-pt attention is short for hierarchical attention
used in MapTR [8] model.

3.2.2 Temporal fusion

We build a single-frame baseline model by training 72
epochs with ResNet50 checkpoints. And then all experi-
ments finetune the baseline model by 12 epochs. We use
single-frame mode to finetune the baseline model, model can
reach a score of 52.93% mAP, as shown in Table 2. For the
streaming strategy, we use one convGRU [6] as dense fusion
encoder. It has a performance improvement of 3.7%. And for
the streaming-streaming strategy, two layers of convGRU are
used instead of one. Unfortunately, the performance increase
only 0.56% compared to single-frame. For the streaming-
stacking mode, we select 4 frames out of latest 10 frames
for the layer of stacking mode during training phase, and a
certain distance strides of 5, 10, 15, 20 meters during testing
phase. the performance reaches 57.13% mAP.

3.2.3 Ped crossing resampling

We use the hierarchical attention based decoder same as
MapTR as baseline. The model performance reaches score
of 33.6% DET-a, as shown in Table 3. Then we change
the decoder to instance attention. The model performance
increase 0.45%. Finally, we utilize ped crossing resampling
to improve the performance to 35.42%

3.2.4 Traffic elements

We utilize COCO pretrained model and finetune for 40
epochs as our 2D detector baseline. The dataset is resampled
by a ratio from 5 to 20 times. The entire model is optimized
by AdamW with a learning rate of 0.04 and resolution of
1568× 2048. And then we generate pseudo labels by thresh-
old of 0.3. YOLOv8-x with data augmetation can reach a
score of 79.42% on DET-l, as shown in Table 4. Apply-

Method DET-t%

YOLOv8+data-aug 79.42
+Resampling 80.06
+TTA 81.07
+Pseudo label learning 81.81
+YOLOv9 ensemble 82.40

Table 4. Ablation study of traffic elements on the Openlanev2 test
set.

Model A Model B Model C DET-l% TOP-ll% TOP-lt%

✓ 48.67 40.04 48.27
✓ 46.5 36.82 47.36

✓ 42.33 35.01 44.53
✓ ✓ 49.8 43.0 50.97
✓ ✓ ✓ 50.74 46.32 53.59

Table 5. Ablation study of lane segments model ensemble on the
Openlanev2 test set.

ing resampling has a performance improvement of 0.64%.
TTA further improves 1.0% score. We utilize pseudo label
to improve the performance to 81.81%. Finally, the model
ensemble of YOLOv8 and YOLOv9 [3] improve the perfor-
mance to 82.4%.

3.2.5 Lane segments

We train three versions of models, using different backbones
(ViT [14], InternImage-XL [16]) with different input image
resolution scales (0.5, 0.75, 1). During the ensemble process,
we utilize an ensemble strategy that incorporating predictions
with low similarity. Initially, the models are sorted by their
evaluation scores, the best model is the base model, and the
other two models are subsequently integrated as proposal
models. From the Table 5, it can be seen that the more models
ensembled, the more remarkable performance improved.

4. Conclusion

In this work, we rethink the pipeline of 2D / 3D elements
detection and topology reasoning of mapless driving. Firstly,
we employ a symmetric view transformation(SVT) to com-
bine forward projection and backward projection to form
complementary advantages. Secondly, we introduce the hier-
archical temporal fusion(HTF) to integrate temporal features
from local-to-global stably. Moreover, we improve ped cross-
ing representation by a novel resampling method. Finally,
LGmap is the 1st-place solution on the Mapless Driving
track, which achieves 0.66 UniScore.
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