Leveraging SD Map to Assist the OpenLane Topology
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Abstract

OpenLane topology understanding aims to perceive var-
ious road elements in driving scenes and interpreting
their topological relationships based on multi-view images,
which has played a crucial role in scalable autonomous
driving systems. Considering the basic road topology
information is readily accessible in Standard Definition
(SD) maps, we explore the efficacy of SD map in assist-
ing the OpenLane topology problem and design a compact
transformer-based architecture for SD map encoding and
integration. Further, we propose a dynamic positional en-
coding scheme to improve the decoding performance, which
exploits the intermediate lane points to refine the positional
encoding for each lane attention layer in the detection head.
The more precise location information addresses unpre-
dictable changes in various driving scenes, and delivers
more accurate localization results. The proposed method
ranked 2% in the OpenLane-V2 UniScore (OLUS) on the fi-
nal leaderboard of the OpenLane Topology Challenge 2024.

1. Introduction

OpenLane Topology [3, 9] involves perceiving road ele-
ments such as lanes, traffic signs and traffic lights, and also
understanding their relationships from multi-view images.
This task is essential for enabling autonomous vehicles to
navigate accurately and safely in complex driving environ-
ments. Specifically, five sub-tasks are considered in this
problem, i.e., lane detection, area detection, traffic element
detection, lane-lane topology, and lane-traffic topology pre-
diction.

SD maps is cost-effective and widely available for both
human and autonomous driving systems. Considering the
basic road geometry, lane information, and connectivity in-
herent in SD maps, we attempt to explore its complemen-
tary information to multi-view images in solving the Open-
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Figure 1. The left image is a sample SD map, and the right one is
its corresponding HD map ground-truth. Though the SD map has
relatively limited details, it provides a high-level description of the
road in a coarse manner, which is important for distant or complex
scenes.

Lane topology problem. As shown in Figure 1, SD map pro-
vides basic road layout and geometry information, which is
useful in guiding the construction of the High Definition
(HD) map with more details. To this end, a SD map en-
coder is first designed to encode the vectorized elements in
SD maps, where the encoding is additionally guided by the
Bird Eye’s View (BEV) features to provide rich spatial con-
text information. Then the enhanced SD map tokens are
further integrated in the lane detection head as an additional
modality for better road layout awareness.

Besides, we also propose a dynamic positional encod-
ing scheme [6] for the lane detection head to further im-
prove the performance. Traditionally, position encoding is
formulated as learnable tokens and remains fixed for dif-
ferent lane attention layer in the detection head. However,
this static dilemma is inferior to provide precise location in-
formation and hinder the localization accuracy. We noted



SDMap Encoder

I
i Lane-Attention

/

moBE

Lane-Attention

~

S Ve

e N

O
O

D SDMap Polyline Embedding |:| BEV Feature |:| Content Embedding I:l Positional Embedding

Figure 2. The architecture of our proposed SD map Encoder and Lane Decoder. The SD map Encoder is based on transformer with the
cross-attention layer be replaced with the Lane-Attention layer to better preserve the structural information from the BEV feature map. The
lane decoder is also built upon transformer, with an additional cross-attention layer to absorb the output of the SD map encoder for road

layout information.

lane points from intermediate layers already cater for more
explicit and precise location clues. Framed in the layer-
by-layer architecture, the predicted lane points from each
layer are naturally refined in a coarse-to-fine manner to pro-
vide more accurate location information to the underlying
driving scene. Besides, lane points are changing in differ-
ent scenes. Motivated by the two observations, we update
the position encoding for each lane attention layer based on
the intermediate outputs of reference points, which leads
to more precise location awareness and improved detection
accuracy.

In the OpenLane Topology Challenge 2024, our pro-
posed architecture attains the 2"¢ position on the leader-
board with a OLUS score of 63.9. Besides, our method
outperforms all other competitors on Top;; with a score of
47.43%.

2. Method
2.1. Model Architecture

Overall, our approach is divided into four consecutive com-
ponents. Firstly, given the multi-view input images, the
BEV features are constructed using BEVFormer [5]. Due
to the length limit, illustration of the BEV feature extrac-
tion are omitted and please resort to [5] for more details.
Secondly, based on the BEV features, we built a SD map
encoder to extract SD-Map features with cross-modality in-
teraction. Thirdly, we introduce a novel ensemble approach,
which can further enhance the performance. Finally, we de-

couple the topological relationships from road element de-
tection using a Multi-Layer Perceptron (MLP), which im-
proves the accuracy of topology prediction. The SD map
encoder, the lane decoder and the topology prediction are
the main parts of our contribution, and we will elaborate on
them in the following sections.

2.2. SD Map Encoder

Given an SD map, we aim to extract cross-modality features
from the polylines with a modified transformer decoder[8],
as illustrated in Figure. 2.

Given the SD map elements represented in polylines, we
first encode them into polyline embeddings. Specifically, a
fixed number of N points are evenly sampled from each of
the M polylines, which are further normalized to the BEV
range. The sampled points are then encoded into sinusoidal
embeddings as:
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where p = (z;,y;) is the sampled point coordinate on the
polyline, j is the index of dimension, d denotes the dimen-
sion and 7T is the temperature scale. A one-hot vector with
dimension K is used to encode the lane type. Finally, the
positional embedding of all the sampled points and the lane
type embedding are concatenated, resulting to the polyline



embedding of a SD map with shape of (N - d + K). Before
feeding the embeddings into the transformer encoder, we
use a linear layer to align them with the model dimension
dm.-

To enrich the SD map features with more detailed sen-
sory information, we employ a transformer [8] to interac-
tively fuse BEV features via the cross-attention mechanism.
Specifically, we adopt Lane Attention proposed in [4] as an
improved implementation of cross-attention layers, which
is demonstrated to better preserve structured information
compared to original version.

2.3. Lane Decoder

With enhanced SD map features and BEV features, the lane
decoder is built to predict the coordinates of the road ele-
ments. The transformer decoder with the lane attention im-
plementation is adopted to construct the lane decoder. To
gain cross-modality alignment, an additional SD map cross
attention layer is stacked after each lane attention layer to
incorporate the SD map features.

In the Lane Decoder, the coordinates of the road ele-
ments we aim to detect are progressively adjusted and re-
fined through each layer. However, the original positional
encoding information of the decoder remains consistently
fixed, which affects the accuracy of the detection outputs.
To this end, we propose a dynamic positional encoding
scheme for each lane attention layer in the lane decoder,
and update the positional encoding based on the location
information of lane points derived from the output of the
preceding decoder layer. The mechanism is illustrated in
Figure 3. Specifically, each lane points is encoded into d
dimension using sinusoidal positional encoding. For a road
element comprising N points, this results in a positional
encoding of size N x d. Subsequently, we employ a Lin-
ear layer to map this encoding to match with the model’s
dimensionality d,,,. The resulting encoding is exploited as
the new positional encoding to complete the lane attention
operation in current decoder layer.

Beyond the detection of lane segments, the decoder is
also tasked with pedestrian crossing identification and road
boundary lines detection. In general, different road element
types require different representational complexity. For ex-
ample, a pedestrian crossing can be simply represented with
a pair of points, while road boundaries necessitate a more
number of points for accurate representation. As a result, it
is inappropriate to condition the three different tasks on the
same decoder. In our model training regime, we formulate
the road element detection tasks in a multi-task fashion with
the shared architectures but separate parameters.

2.4. Topology Prediction

Most existing approaches [4, 11, 12] infer the road topol-
ogy together with road elements detection tasks in a multi-
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Figure 3. The dynamic positional encoding scheme which updates
the positional encoding for each lane attention layer in the lane
detection head based on predicted lane points of previous layer.

task framework. However, in a topology prediction task,
the number of positive (associated elements) and negative
(non-associated elements) samples are highly imbalanced,
which makes it is hard to train and fine-tune in a multi-task
framework. To better handle the imbalance problem in the
topology prediction task, we propose to decouple it from
the multi-task framework, and solve it in a subsequent stage
based on the detection results from the lane decoders. We
conjecture that the geometric relationship of the roads is ad-
equate to derive topological relationships as long as the road
detection results are sufficiently accurate.

The multi-layer perceptron model similar to
TopoMLP [12] is employed for lane-lane topology and
lane-elements topology prediction with different trained
parameters. The input to this MLP consists of two parts:
the first part is the predictions from the lane decoder which
caters for the geometric information between roads. To
further compliment the geometric features, we additionally
consider the distance between the endpoint of one lane to
the starting point of another lane. The closer the starting
and ending points of two lanes are, the more likely they are
topologically linked.

In terms of the lane-elements topology prediction, we
use the bounding box coordinates of traffic elements in the
front-view camera and the camera’s extrinsic parameters to
encode the information of the traffic elements.

2.5. Model Ensemble

An OpenLane-friendly strategy is proposed to enhance the
performance by ensembling outputs from distinct detection
models. First, we select the results of the best-performing
model on the validation set as the base proposals, and rank
the others accordingly. Then, the results of the other can-
didate models are integrated into the base ones via a trust-
based voting strategy. Specifically, we rely on the similarity
of the upcoming proposals in the candidate models with the
base ones and accordingly assign a confidence score to rank



ID|npoints Task wi SD w/ DP|DET,|DET, APpea APya

1 10 L X X 30.02 - - -
2 10 L X v 30.78 - - -
3 10 L v v 32.39 - - -
4 2 P X X - - 3234 -
5 10 P X X - - 31.97 -
6 20 B X X - - - 24.64
7 30 B X X - - - 20.26
8 |[10/2/20 LPB x X |27.48(29.99 32.16 27.82
9 (10220 LPB Vv v 29.77]| 34.26 37.43 31.09

Table 1. Ablation study on the OpenLane-V2 [9] validation set
with the same backbone of ResNet-50, all the models are trained
for 24 epochs with a batch size of 96. L, P and B denotes the task
of lane segment, pedestrian crossing detection and road bound-
ary detection, respectively. w/SD means using SD map. w/DP
means using Dynamic Positional Encoding module.

the proposals. In the affirmative case [1], the base model
accepts all new proposals (the proposals that are dis-similar
to any of base proposals) from the candidate models, while
the confidence of these proposals is reduced by a decay fac-
tor. Conversely, in the consensus case [1], proposals from
the candidate and base models are quite similar. Given
the original confidence score p; of the base proposal, its
new confidence score after ensembling will be enhanced to
(1 + p?) x py, where p, is the confidence of the candidate
proposal. In this situation, we discard the candidate propos-
als, keep those base proposals, and increase their confidence
by multiplying with a scaler larger than 1. With this strat-
egy, we can effectively reduce the number of false negatives
while boosting the confidence of true positives.

3. Experiments
3.1. Implementation Details

Following LaneSegNet [4], we adopt the same data pro-
cessing pipeline and BEV feature dimensions. Each back-
bone undergoes an initial training phase of 70 epochs on
the three tasks jointly, followed by 10 epochs dedicated to
specific tasks. Our model is trained across 24 GPUs, with
a batch size of 4 per GPU. The AdamW optimizer starts
with a learning rate of le-3, which decays by a factor of
1/5 at milestones 0.7 and 0.9. For finetuning, the learning
rate is adjusted to 3e-4. For the topology prediction task,
we use a fixed learning rate of le-4, and training the model
on distortional ground truth lane and traffic elements for 10
epochs. In addition, increase the scale of the input images
can significantly enhance the expression capability of BEV
features, so we enlarge the default scale of 0.33 to 0.5 for
our submitted models.

When handling road boundary and crosswalks, to resolve
ambiguity, we standardized the traversal direction of the el-

ID| Backbone Pretrain  Data DET,|DET,

1 Swin-L ImageNet-1K trainval 42.34 | 45.30
2 |VoVNetV2-99 ADE20K trainval 38.82 | 42.72
3 |Internlmage-b ~ADE20K trainval 45.73 -

4 Ensemble - - 49.97 | 49.80

Table 2. Performance of different backbones evaluated on the
OpenLane-V?2 test set.

ements. Consequently, during training, we do not need to
consider the diversity of representations.

3.2. Experimental Results

SD-Map and Dynamic Positional Encoding. Comparing
results in Row 1-3 and Row 8-9 of Table 1, using SD Map
and Dynamic Positional Encoding consistently enhances
performance across all three tasks, demonstrating the effec-
tiveness of these two proposed strategies for better Open-
Lane Topology Understanding.

Number of points. Comparing the results in Row 4-7
of Table 1, employing a more concise representation with
fewer points is beneficial with improved performances in
both ped_crossing and road_boundary tasks.

Joint training. Comparing the results of Row 6&8 in Ta-
ble 1, we find that using the multi-task joint training signif-
icantly improves the boundary detection performance. Ad-
ditionally, the model trained on three detection tasks serves
as a good pre-trained model for training downstream tasks
separately.

Model Ensemble. To further enhance the model’s capabil-
ity and effectiveness, we utilized larger backbones as fea-
ture extractors. For our competition submissions, we em-
ployed models such as Swin-L [7], InternImage-b [10] and
VoVNetV2-99 [2]. And we trained them using the same
strategy as above. Table 2 examines the effects of differ-
ent backbones on the performances. It can be observed that
despite the smaller size of the Internimage-b [10] model,
its performance is better due to the use of appropriate pre-
training. Therefore, in the subsequent model ensembles, we
used its results as the base and gradually integrated the re-
sults of Swin-L and VoVNetV2-99 via the proposed trust-
based voting scheme. As observed, the ensembled model
achieves the best performance, validating the effectiveness
of the proposed ensemble strategy.
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