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Abstract

This technical report presents our method, called Spa-
tioAwareGrouding3D, which is a spatio aware model for the
Multi-View 3D Visual Grounding track in the Autonomous
Grand Challenge at CVPR 2024. Our method is built upon
the baseline model [11] and contains three simple yet effec-
tive techniques to improve the performance. Firstly, a Vi-
sual Language Enhancer Layer is introduced into the model
for further fusing the text and visual features. Secondly, a
Spatio-aware Decoder is proposed to enhance the spatial
reasoning ability of the model, including the designed spa-
tio condition self-attention layer and vision 2d cross atten-
tion layer. Finally, we use the ensemble technique to further
boost the performance. Experimental results on the Multi-
View 3D Visual Grounding track demonstrate that the pro-
posed SpatioAwareGrouding3D achieved 46.92 under the
AP@0.25 metric.

1. Introduction

The indoor embodied 3D perception system, which aims
to understand the object semantics and scene geometry
grounded in language descriptions, is important for the em-
bodied agent [11]. It faces more challenges compared to
the system for driving scenes, including the multi-modal
input with language instructions, more complex seman-
tic understanding, diverse object categories and orienta-
tions, and different perceptual spaces and needs. Based on
this, the Multi-View 3D Visual Grounding track in the Au-
tonomous Grand Challenge is proposed, which is built upon
the EmbodiedScan[11], a holistic multi-modal, ego-centric
3D perception suite. In this track, given language prompts
describing specific objects, models are required to detect
them in the scene and predict their oriented 3D bounding
boxes.

It is noted that, the text-aware feature extracting and spa-
tial reasoning abilities of the model are important for the
model to tackle the visual grounding task. Thus, a novel

model called SpatioAwareGrouding3D is proposed, which
contains a Visual language Enhancer Layer and a Spatio-
aware Decoder to understand the scenes better. Moreover,
a ensemble technique is introduced to further improve the
performance of the model.

2. Methodology
In this section, we firstly introduce the architecture of the
proposed SpatioAwareGrouding3D, including the details of
the Visual Language Enhancer Layer and the Spatio-aware
Decoder. Then, we introduce the strategy of the ensemble
technique.

2.1. Overall architecture

As shown in Fig. 1, SpatioAwareGrouding3D is built upon
the Embodied Perception Model [11] and contains five
modules: the image backbone, the point cloud backbone,
the text encoder, the enhancer fuse module and the spatio-
aware decoder. Given the multi-modal inputs, the image
backbone is to extract vision 2D features from the multi-
view images, while the point cloud backbone pursues vi-
sion 3d features from the input point cloud. The text en-
coder is designed for generating the text features from the
language prompts. Then, the multi-modal features are grad-
ually fused by the enhancer fuse module, which is consisted
of the sparse fuse module, the neck 3d module and the Vi-
sual Language (VL) Enhancer Layer. Finally, the features
updated by the enhancer fuse module are given to the spatio-
aware decoder, which outputs the final prediction results.

2.2. Visual Language Enhancer Layer

Considering that the vanilla fuse module in the baseline
only takes the vision 2d and point cloud features, we insert
the Visual Language Enhancer Layer proposed in Ground-
ing Dino [8] into the module, which is helpful for align-
ing features of the vision and text. As shown in Fig. 2, it
takes the vision 3d features generated by the neck3d and
the text feature produced by the text encoder as the input,
adopting two cross attention layers for cross-modality fea-
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Figure 1. overview of SpatioAwareGrouding3D.

Figure 2. Visual Language Enhancer Layer.

ture fusion. Specifically, The Text-To-Vision3D Cross at-
tention and Vision3d-to-Text cross attention are both vanilla
attention [10]. Since we found that the text and vision self-
attention in the original Visual Language Enhancer Layer
almost have no effect in our experiments, they are removed
for reducing the GPU Memory cost.

2.3. Spatio-aware Decoder

The Spatio-aware Decoder is to predict the final oriented 3D
bounding boxes from the enhanced multi-modal features,
which contains the Language-guide query selection layer
and several attention layers. Please see the Embodied Per-
ception Model [11] for more details. To dig the spatial infor-
mation in vision features more effectively, we introduce the
spatio condition self-attention layer and the vision2d cross

attention layer in each decoder layer as shown in Fig. 1.

2.3.1 Spatial Condition self-attention

The spatial condition self-attention layer proposed in [2] is
helpful for understanding and reasoning about spatial rela-
tions, which explicitly considers the relative spatial location
in the attention map. It is used to replace the vanilla self-
attention after the Language-guide query selection layer and
takes the query features {Q1, Q2, ..., Qn}, the query coordi-
nates {O1, O2, ..., On} and the sentence feature scls as the
input.

Firstly, the spatial distance dij between each pair
of queries {Qi, Qj} is computed with their coordinates
{Oi, Oj} and used to generate the pairwise spatial feature
fs
ij as:

fs
ij = [dij , norm(dij)], (1)

where [·] denotes the concatenation operation and norm(·)
is the normalization operation. Then, the language condi-
tioned weight gsi is generated for each query, which could
be formulated as:

gsi = W⊤
S (scls +Qi), (2)

where WS ∈ Rd×2 is a learnable parameter and the bias
term is omitted for simplicity. The spatial relevance of
(Qi, Qj) is defined by fusing gsi and fs

ij , which could be
formulated as:

ωs
ij = gsi · fs

ij · gsj . (3)

Finally, the spatial condition attention map is calculated
with the sigmoid softmax (SigSoftmax) fusion function:

ωij =
σ(ωs

ij) exp(wo
ij)∑N

l=1 σ(ω
s
il) exp(wo

il)
, (4)



where σ(·) is the sigmoid function and wo
ij is the vanilla

attention weight.

Algorithm 1 Model Ensemble
1: Input: Ensemble model Box Prediction B1, B2, ..., Bn,

Ensemble model score prediction S1, S2, ..., Sn, Ensemble
weights W1,W2, ...,Wn, overlap thresh T.

2: Output: Ensemble model Predictions R
3: procedure ENSEMBLE(n)
4: bboxes, scores, res = [], [], []
5: for i = 1 to n do
6: scores.append(Si)
7: bboxes.append(Bi)
8: end for
9: idxs = Argsort(scores)

10: for i = 1 to Len(idxs) do
11: for j = 1 to Len(idxs) do
12: if Overlap(Bi, Bj) >= T then
13: Bi = Average(Wi ∗Bi,Wj ∗Bj)
14: end if
15: end for
16: res.append(Bi)
17: end for
18: return res
19: end procedure
20: R = ENSEMBLE(B,S,W, T )
21: return R

2.3.2 Vision2d Cross Attention

Considering that the baseline model simply projects the
points to vision 2D features by camera intrinsics and extrin-
sics for sampling and aggregating the image features into
the vision 3D features, it might loses some high level se-
mantic information potentially. Addressing this problem,
we introduce a vision 2D cross attention layer before the
text cross attention layer in the Spatio-aware Decoder. In-
spired by SparseBev [7] and Deformable Attention [12], the
vision 2D cross attention layer firstly generates a set of sam-
pling offsets {(∆xi,∆yi,∆zi)} from the input query fea-
ture. These offsets are transformed to 3D sampling points
based on the query coordinate (xi, yi, zi): xi

yi
zi

=

∆xi

∆yi
∆zi

+
 x

y
z

 . (5)

Then, the sampling points are projected into the image fea-
tures for aggregating them into the corresponding query by
the cross attention mechanism.

2.4. Model Ensemble

The ensemble technique combines several individual mod-
els to obtain better performance [4]. Considering that the
positions of the predicted boxes generated by a single model

Table 1. Multi-view 3D visual grounding benchmark. the experi-
ment was evaluated on mini validate dataset

Methods Input Epoch AP25 AP50

Embodied Perception [11] RGB-D 12 33.59 14.40
Ours RGB-D 24 39.00 15.43

might be inaccurate, we average some overlapped 3D boxes
from different models for achieving better performances un-
der the AP@0.25 and AP@0.5 metrics. The details of the
ensemble strategy are shown in Alg. 1

3. Experiments

3.1. Dataset

We use EmbodiedScan [11] to train the proposed model,
which is a multi-modal, ego-centric 3D perception dataset,
and benchmark for holistic 3D scene understanding. It
consists of ScanNet[3], 3RScan[6] and Matterport3D[1]
datasets. It encompasses over 5k scans encapsulating 1M
ego-centric RGB-D views, 1M language prompts, 160k 3D-
oriented boxes spanning over 760 categories, some of which
partially align with LVIS, and dense semantic occupancy
with 80 common categories[11].

The Multi-View 3D Visual Grounding challenge support
two different scale datasets: the mini scale and the full scale.
Due to the limited of GPU resources, only the mini scale
dataset is used for training.

3.2. Implementation Details

We use Adam optimizer with cosine annealing policy to
train the model, while the max learning rate is set to
5 × 10−4, with 0.0005 weight decay. The model is
trained on 8 NVIDIA A100 GPUs with 24 epochs. Fol-
low Embodied Perception Model [11], the ResNet50[5]
and MinkResNet34[9] are used as the multi-view and point
cloud backbone. The number of visual language enhancer
layer is set to 2, and the sampling offset points in the vi-
sion2d cross attention layer is set to 3 in order to reduce the
training time.

3.3. Comparative evaluation

We evaluate the proposed SpatioAwareGrouding3D in the
validation set in comparison to the baseline model [11] and
the results are reported in Tab.1. It can be seen that Spa-
tioAwareGrouding3D outperforms the baseline model and
achieves 39.00 under the AP25 metric.
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