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Abstract

Multi-view 3D visual grounding aims to locate target
objects in 3D space based on natural language. Existing
methods often suffer from sparse feature spaces due to lim-
ited contextual information in language descriptions and
the sparse fusion of point clouds with multi-view images.
In this work, we propose a novel method, DenseG, to ad-
dress these challenges. For text modality, we propose an
LLM Assisted Augmentation Pipeline that leverages LLMs
to enhance input languages with more anchors and diverse
viewpoints and construct a scene information database to
provide better context, thereby enriching the language fea-
ture space. For the visual modality, we introduce a Bidi-
rectional Text-View Images Interaction Module that retains
multi-view semantic information by facilitating interaction
between textual and global multi-view visual features. Our
approach significantly outperforms the baseline and other
teams, achieving first place in the Multi-View 3D Visual
Grounding Track of CVPR 2024 Autonomous Grand Chal-
lenge with an AP of 59.59% at IoU 0.25 and an AP of
34.72% at IoU 0.50.

1. Introduction
Multi-view 3D visual grounding, which aims to locate tar-
get objects in a 3D environment based on natural language
descriptions, is a fundamental task for embodied agents. In
recent years, the increasing attention in the field of embod-
ied AI has garnered several works in this field [5, 7, 8, 10–
13].

The task of multi-view 3D visual grounding requires a
deep understanding of space, semantics, and language. Cur-
rent methods integrate information from 2D, 3D, and lan-
guage modalities to enrich the feature space with contextual
information. Some methods [8, 11–13] reconstruct 3D from
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Target Distractors Anchors

Language:
find the chair beside the table

Augmented language:
find the chair beside the table, nearest to 
television and furthest to the windowsLacks Anchors

Limited cloud points 
on small objects

a) Original text prompts lacks anchors, cause ambiguities in locating the 
intended target.

b) The mouse is hard to recognize in point cloud with only 2 points, 
however, it can be easily recognize in the RGB image.

Figure 1. The sparsity problems in the language descriptions and
visual features

RGB-D for better spatial feature representation to locate the
corresponding object described in the language. However,
due to the inherent sparsity of 3D point clouds, a significant
amount of multi-view semantic information is lost at the in-
put stage. While some approaches [5, 7] attempt to enrich
multi-view semantic features by applying various rotations
to the point clouds, the sparse nature of point clouds still
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limits their performance.
Instead of using painted point clouds or multiview point

clouds, EmbodiedScan [10] encodes the point cloud and
RGB images separately aiming to unleash the advantage
of both modalities. EmbodiedScan first extracts features
from 3D point clouds and multi-view 2D images. They then
project the point cloud features onto the images and per-
form a sparse fusion before integrating language features.
This approach allows for some interaction between features
of adjacent regions during feature extraction, which par-
tially alleviates the loss of multi-view semantic information.
However, some crucial semantic pixels in the 2D images
are often lost during the sparse fusion process, leading to a
sparse visual semantic space that compromises the model’s
ability to retain object semantics, especially for smaller ob-
jects.

Furthermore, the input language descriptions often lack
necessary anchors and are confined to single-view perspec-
tives, leading to a sparse textual feature or lack of anchors.
This absence of essential contextual details can cause the
model to be easily disturbed by similar objects. Previous
methods[5] have attempted to enrich these input descrip-
tions with large language models (LLMs). However, this
approach only enhances the view without improving the
sparse anchor problem and simply replacing the words in
the text limits the diversity in generated text.

In this work, we propose DenseG, a novel method for
multi-view 3D visual grounding that alleviates the sparsity
in both visual and textual features. Specifically, for the
text modality, we construct a scene information database
based on the existing dataset and leverage LLMs to en-
rich input descriptions with more anchors and diverse view-
points, reducing confusion with similar objects and provid-
ing more robust representations. The database provides ex-
ternal knowledge to improve the diversity in the generated
text while concurrently mitigating hallucinations in LLM.
We further utilize LLMs to verify the enriched descriptions
to ensure accuracy and reliability, further reducing halluci-
nations.

For the visual modality, we introduce a Bidirectional
Text-View Images Interaction Module (Bi-TVI) to retain
more multi-view semantic information. Before fusing point
cloud and image features, we append a learnable token to
the flattened feature map of each view image to obtain the
scene’s global features by self-attention mechanism. These
visual global features then interact with the textual features
through cross-attention layers, ensuring the visual features
are enriched with multi-view semantics.

We conducted extensive experiments on the Embodied-
Scan benchmark dataset [10]. Our method outperforms
other teams and achieved first place in the CVPR 2024 Au-
tonomous Grand Challenge Track on Multi-View 3D Vi-
sual Grounding, with an AP@IoU0.25 of 59.59% and an

AP@IoU0.5 of 34.72%, significantly surpassing the base-
line.

2. Method

This section is structured into three parts. Sec 2.1 describes
the overview of network architecture. Sec 2.2 explains the
LLMs-assisted text augmentation to alleviate the anchor
sparsity in the language feature space. Sec 2.3 introduces
the Bidirectional Text-View Images Interaction Module (Bi-
TVI), which alleviates sparsity in the visual feature space.

2.1. Overview

Given the excellent performance of EmbodiedScan in
multi-view 3D visual grounding, we adopt their frame-
work and incorporate our proposed modules. We show the
overview of our framework in Fig. 2.

2.2. LLM Assisted Augmentation Pipeline

Due to the lack of anchors and limited viewpoints in in-
put language, which result in sparse textual feature space
that causes description ambiguities, we propose the LLM
Assisted Augmentation Pipeline. This pipeline enriches in-
put descriptions by leveraging LLMs grounded with a scene
information database, providing more contextual details of
the corresponding scene. The pipeline involves three key
steps, as illustrated in Fig. 3.

Step 1: Construct Scene Information Database. We
first collect the text descriptions in the EmbodiedScan[10]
dataset by their scene. For each text to be rephrased, we
select the K language descriptions that are most relevant to
the target object from the same scene. These descriptions,
which encapsulate rich spatial and semantic context, consti-
tute the scene information database. This database is lever-
aged to provide external knowledge to the LLM, thereby
enriching the input text with reliable context information.

Step 2: Enrich Text with LLM and Database. The text
to be rephrased, along with its corresponding scene infor-
mation database constructed in Step 1, is fed into the LLM.
The LLM leverages the database to draw on spatial and se-
mantic details, enriching the text with additional contextual
anchors to prevent confusion with similar-looking objects.
Moreover, the LLM addresses the single-view limitation by
generating from opposite viewpoints, similar to [5].

To ensure reliability and reduce hallucinations, our
prompt is designed with several key principles in mind:

1. Sufficient and Reliable Anchors: Utilize multiple
positional relationships of objects in the scene to describe
the target object, ensuring enough reliable anchor points to
minimize distractions.
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(a) Overall Framework of Our Method (b) Bidirectional Text-View Images Interaction.

Figure 2. The overall framework is shown on the left and the detailed Bidirectional Text-View Images Interaction module (Bi-TVI) is
shown on the right.
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Figure 3. LLM Augmentation Pipeline.

2. Opposite View only for View-Dependent Text: For
view-dependent text, rephrase it from the opposite perspec-
tive and logically adjust the spatial relationships, e.g., ”fac-
ing the front of xx, select xx to the right of” becomes ”with
back to xx, choose xx on the left side of”. For view-
independent text, simply add more anchor points to enhance
its context.

3. High Confidence in Modifications: Ensure that all
modifications, including the addition of new positional re-
lationships and perspectives, are made with a high degree
of confidence in their accuracy. The target object and its
positional relationships must remain consistent.

By adhering to these principles, the rephrased text be-
comes more detailed and reliable, enriching the textual fea-
ture space. For example:

Original: ”facing the front of the guitar, choose
the curtain to the right of it”

Rephrased: ”with back to the guitar, select the
curtain that is on the left of it, near the bed, be-
tween the picture and clock, and far away from

the bicycle”

Step 3: Verify the Generated Results. The final step is to
verify the accuracy of the descriptions generated in Step 2.
The LLM compares the rephrased sentences with the orig-
inal sentences and scene descriptions from the database to
identify possible inaccuracies or hallucinations, focusing on
spatial relationships and perspective adjustments. This step
ensures the enriched descriptions are accurate and reliable,
further reducing hallucinations.

2.3. Bidirectional Text-View Images Interaction

To preserve more information in the visual feature represen-
tation, we propose a Bidirectional Text-View Images Inter-
action Module (Bi-TVI) to perform text and view-images
feature interaction before the point cloud and image fusion.
Specifically, we first obtain the global features of each view
by appending a learnable token gn to the flattened feature
maps of each view from the output of the last image back-
bone layer. We followed this by performing a self-attention
mechanism on the features of each of the scenes and using
the output corresponding to g′n to represent the global fea-
ture of view n of the scene.

g′n = ϕ(SelfAttn(gn, Fview n)) (1)

where 1 ≤ n ≤ N views, g ∈ R1×C′
is the learnable

embedding, Fview n ∈ RH
32

W
32×C′

, and ϕ denotes a function
that outputs the first token in the token list.

To allow feature interaction between image views, we
perform another self-attention among the g′n denoted by:

G′ = SelfAttn(g′1, ..., g
′
n) (2)

Lastly, we use a bidirectional cross-attention mechanism
that performs interaction between text features and view



Method AP@IoU0.25 AP@IoU0.5

EmbodiedScan* 41.87 15.61
DenseG-8e 47.23 21.12

Mi-Robot (Top3) 46.91 20.38
chanc101 (Top2) 58.58 34.63
DenseG-E (Top1) 59.59 34.72
∗ Our implementation.
-E denotes Ensembled Predictions

Table 1. Test Results: Leaderboard Results. Note that DenseG-E
is the ensembled prediction of several full 12-epoch models, that
are not tested on the test set individually due to submission limits.

features.
T ,G′ = BiCrossAttn(T,G′) (3)

We then add the feature vectors in G′ to the corresponding
image views and replace the text features T with T for suc-
ceeding network parts.

3. Experiments
3.1. Implementation Details

Architecture details. We followed EmbodiedScan [10]
by using feature encoders, sparse fusion modules, and a
DETR-based [2] decoder. Specifically, we use ResNet50
[6], MinkNet34 [4], and CLIP [9] text encoder as our image,
point cloud, and language feature encoders respectively. We
keep the vision-language sparse fusion module and decoder
layer unchanged as in EmbodiedScan while incorporating
our Bi-TVI before the vision-language fusion module.

Training details. We first pre-train our image and point
cloud encoders on the 3D object detection task. We follow
the training settings in EmbodiedScan while incorporating
CBGS[14] during model training to alleviate the long-tail
distribution in dataset classes.

Our multi-view visual grounding model, DenseG, is
trained using AdamW optimizer with a learning rate of
5 × 10−4, weight decay of 5 × 10−4, and batch size of 24
with gradient accumulation for 2 iterations in training on
mini dataset and batch size of 48 for full dataset training.
We train the model with 12 epochs and decay the learning
rate by 0.1 at epochs 8 and 11. We also incorporate expo-
nential moving average weights updating with a momentum
of 0.9998 and a gamma of 2000. Other training specifica-
tions are kept the same as those of EmbodiedScan. We note
that we only use the LLM augmented text during training.

Training data. We train multiple variants of DenseGon
different sets of data. Specifically, for the full setting,
we train various variants of models with different datasets.

Method AP@IoU0.25 AP@IoU0.5

EmbodiedScan 33.59 14.40

EmbodiedScan* 34.66 14.39
+ CLIP encoder 35.71 14.77
+ CBGS 37.35 16.06
+ LLMAug(10K) 38.93 17.43
+ Bi-TVI 39.70 18.31
∗ Our implementation.

Table 2. Mini Val Result: Performance of the models on Official
Mini Validation Set. The + denotes adding to the model in the
previous row.

Aside from the official training and validation set, LLM-
augmented dataset of 308k samples, we also adopted the
publicly available dataset such as Nr3D [1], Sr3D [1] and
ScanRefer [3] for model training.

Ensembling details. We ensemble 5 variants of our mod-
els, including our implementation of EmbodiedScan base-
line, and different variants of our method trained on differ-
ent datasets. The models are ensembled with an IoU thresh-
old of 0.4 using NMS.

3.2. Main Results

Table 1 presents the top-performing teams on the leader-
board. Our ensembled model predictions excel in
AP@IoU0.25 and AP@IoU0.5, showing the superior
grounding performance of our method. For comparison,
we also provide the performance of our model, at epoch
8 (the full model is trained on 12 epochs), trained using of-
ficial data and our augmented data. A simple ablation study
on the proposed components is displayed in Table 2. This
illustrates the effectiveness of our proposed language aug-
mentation and modules.

4. Conclusion
In conclusion, in this technical report, we show our innova-
tive approach, DenseG, effectively addresses feature spar-
sity in multi-view 3D visual grounding by enhancing both
visual and textual modalities and finally achieving the best
performance among the submitted entries. By combining
a scene information database with large language models,
we enrich textual descriptions, reduce confusion, and min-
imize hallucinations. Additionally, our Bidirectional Text-
View Images Interaction Module significantly improves the
retention of multi-view semantics. Our leading results on
the EmbodiedScan benchmark highlight the effectiveness
of our method, setting a new record in the leaderboard and
paving the way for future advancements in embodied multi-
view grounding.
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