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Abstract

In this technical report, we present our solution, named
CascadeFlow, for the Vision-Centric 3D Occupancy and
Flow Prediction track of Autonomous Grand Challenge at
CVPR 2024. Our proposed solution, CascadeFlow, builds
upon CascadeOcc, a cascade sparsity sampling refinement
framework for vision-based occupancy prediction. Based
on CascadeOcc, and considering the scale-invariant and
temporal coherence of scene flow, we propose a flow em-
bedding that learns the relationships between adjacent oc-
cupancy in a 3D scene and refines them stage by stage
within the cascade framework. Thanks to the sparse refine-
ment and cascade design, our model achieves high perfor-
mance: 5th place in RayIoU with a score of 37.8, 2nd place
in MAVE with a score of 0.31, and 5th place in occupancy
score with a score of 40.89. This is accomplished without
the need for test-time augmentation (TTA), post-processing,
or model ensembling, and even with a lightweight setting
requiring only 7.3 GB of memory for training.

1. Introduction
Due to the ability of 3D occupancy representation to offer a
more fine-grained depiction of 3D scenes compared to 3D
bounding boxes, 3D occupancy prediction plays an impor-
tant role in autonomous vehicles. Additionally, the capabil-
ity to forecast future environmental conditions is essential
for advanced collision avoidance and trajectory optimiza-
tion methods. Therefore, the challenge of occupancy and
flow prediction is crucial for performing downstream tasks
safely and reliably in autonomous driving applications.

Our solution builds upon CascadeOcc, which differs
from other sparse methods [9, 16, 19, 23] that utilize a one-
off decision to select non-empty voxels using a set thresh-
old or top-k method. CascadeOcc employs a cascade de-
sign to refine proposal voxels, combined with a probabil-
ity sampling method to select seed voxels. It sparsely re-
fines coarse features in a coarse-to-fine manner, with deeper
stages providing a more comprehensive perception of the
3D scene. We extend CascadeOcc for the flow predic-

tion task and propose CascadeFlow. Considering the scale-
invariant and temporal coherence of scene flow, we propose
a flow embedding that learns the relationships between ad-
jacent frames and employs a cascade refinement design to
refine the flow embedding in multiple stages.

In this challenge, we aims to propose a resource-efficient
method to tackle this challenge rather than simply enlarge
the scale of model to achieve better performance. Our
method requires 7.3G of memory for training, and achieves
5th place in RayIoU with a score of 37.8, 2nd place in
MAVE with a score of 0.31, and 5th place1 in occupancy
score with a score of 40.89.

2. Our Solution
2.1. Model Design

Our solution, CascadeFlow, builds upon a 3D occupancy
prediction method termed CascadeOcc. Here, we provide
a brief introduction to facilitate a better understanding of
CascadeFlow. Due to the intrinsic properties of density
and redundancy in 3D space, simply using dense meth-
ods [10, 21, 22, 25] to process 3D features is not appropri-
ate. Generally speaking, CascadeOcc primarily follows the
forward-backward projection paradigm [11, 12], as shown
in Fig. 1. It refines the coarse voxel features generated by
forward projection methods [5–8] using a sparse technique.
Our forward projection structure is based on the BEVStereo
[7] method. CascadeOcc introduces a sparse refinement
module that employs successive Transformer [10] layers to
enhance the non-empty voxel features. This is combined
with occlusion-aware spatial cross-attention (OA-SCA) and
a probability sampling method to address the cumulative er-
rors found in previous sparse methods [9, 14, 16, 19]. Ad-
ditionally, to improve the geometry of features created by
the Sparse Decoder, it utilizes volume rendering techniques
[18] to provide depth supervision during training.

For CascadeFlow, considering the scale-invariant and
temporal coherence of scene flow, we utilize the cascade
design of the Sparse Decoder to predict the scene flow in a
coarse-to-fine manner. Additionally, we propose using flow

1The rankings are captured up to the time when the report is submitted.

Verified as the Honorable Runner-up in the Occupancy and Flow by the Organizing Committee.
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Figure 1. Model framework. The Sparse Refinement module utilizes a sparse method to refine coarse voxel features and employs the flow
embedding from the previous frame to produce the scene flow at each stage in a residual design.

embedding to represent the relationship between adjacent
frames. Instead of directly estimating the scene flow, we
adopt a residual flow learning structure to refine the scene
flow estimation.

We first utilize the forward projection method to pro-
duce multi-scale coarse voxel features and then employ the
Sparse Decoder to progressively refine these voxel features
using a sparse approach. As depicted in Fig. 2, the Sparse
Decoder uses successive Transformer layers to refine the
coarse voxel features and scene flow. The Transformer lay-
ers mainly contain self-recursive occupancy and flow pre-
dictors to refine the proposed voxel features and the scene
flow. The flow predictor follows a residual design to refine
the scene flow layer by layer, as depicted in Fig. 3. It uti-
lizes the flow embedding to produce the residual scene flow,
and the output scene flow is computed by adding the flow
from the last layer to the residual scene flow. The occupancy
predictor generates non-empty proposal voxels and refines
these non-empty proposal voxels layer by layer. Addition-
ally, it uses probability sampling to select seed voxels for
refinement. The OA-SCA (Occlusion-Aware Spatial Cross-
Attention) then refines these seed voxels using the proposed
occlusion weight, which includes depth consistency [11]
and the occupied weight produced by the occupancy pre-
dictor. This approach addresses projection errors caused by
inaccurate depth estimation. At the end of each stage, the
refined BEV (Bird’s Eye View) features and scene flow are
upsampled to serve as the input for the next stage. Further-
more, the scene flow is combined with the last frame’s flow
embedding to generate the current frame’s flow embedding,
which serves as the input for the next frame.

With the cascaded refinement design, CascadeFlow ob-
tains the required resolution voxel features and scene flow

at the end of the Sparse Decoder. We use a simple MLP
(Multi-Layer Perceptron) as the occupancy predictor and a
similarly structured flow predictor, as described above, to
predict the final scene flow. Additionally, to incorporate ge-
ometry information into the backward projection method,
we use the NeRF [20] technique to supervise the depth in-
formation. The NeRF predictor employs a simple MLP to
generate the density volume.

2.2. Training Loss

To train the model, in each Sparse Decoder stage, we use the
distance-aware Focal loss Lfocal inspired by FB-Occ [11],
Lovasz loss Llov, and affinity losses Lgeo

scal and Lsem
scal from

MonoScene [2] to supervise the occupancy prediction. For
the scene flow prediction, we utilize the weighted-L1 loss,
where the weights are set to 0.1 for zero-speed areas. In
each stage, we control the weight using a factor defined as
w, which is computed by 1

2N−i , where N is the number
of stages and i is the current stage index. We utilize cross-
entropy loss to supervise the depth in the forward projection
method and SILog loss [3] for NeRF supervision.

3. Experiments

3.1. Datasets and Metrics

Dataset. The challenge dataset, nuScenes OpenOcc [21],
is built based on the existing nuScenes dataset [1]. Each
scene is paired with six surround-view images. For this
challenge, each sample is defined within a spatial range of
[−40m,−40m,−1m, 40m, 40m, 5.4m] and the voxel res-
olution is 200× 200× 16. The 3D voxel semantics include
17 classes, with flow labels assigned only to the foreground
classes, such as cars and pedestrians.
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Figure 2. Sparse Decoder. The Sparse Decoder takes the coarse voxel features produced by the forward projection method and refines
them using successive Transformer layers. It utilizes the flow embedding produced by the previous frame with a residual flow predictor to
progressively refine the scene flow. At the each stage of Sparse Decoder, it unsample 2× to server as the next stage input.
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Figure 3. The architecture of Flow Predictor in Sparse Decoder.
We utilize the method introduced by FlashOcc [24] to convert
BEV features into voxel features.

Metrics. The ranking for this challenge is determined by
the occupancy score, which consists of two parts: Ray-
based mIoU [15] and absolute velocity error for occupancy
flow. The RayIoU is computed at three distance thresholds:
1, 2, and 4 meters. For flow prediction, it measures the
velocity errors for a set of true positives, and the absolute
velocity error (AVE) is calculated only for the foreground
classes, such as cars, trucks, and bicycles. The final oc-
cupancy score is defined as a weighted sum of the mean
RayIoU (MIoU) and the mean AVE (MAVE):

Score = MIoU ∗ 0.9+max(1−MAV E, 0.0) ∗ 0.1 (1)

3.2. Implementation Details

We crop the source image to a size of 256 × 704. We em-
ploy common data augmentation strategies similar to those
used in BEVDetOcc [6], including flipping and rotation in
both image and 3D space. For the image backbone, we use
ResNet-50 [4] and employ BEVStereo [7] as the forward
projection method. Voxel pooling is applied to create voxel
features with a resolution of 100× 100× 8. We then utilize
ResNet3D [4] and FPN3D [13] to produce multi-scale voxel
features ranging from 25 × 25 × 2 to 100 × 100 × 8. The
Sparse Decoder is composed of three stages, each contain-
ing 3 layers of Sparse Refinement modules. Additionally,

for NeRF supervision, we emit 1000 rays per image plane
and uniformly sample 96 points along each ray.

We use a global batch size of 16 across 8 NVIDIA RTX
4090 GPUs. The AdamW optimizer [17] is employed with
a learning rate of 1 × 10−4. A linear warm-up is applied
during the first 200 iterations. We utilize 8 temporal frames
and follow BEVDet4D [5] to fuse different frame features.

3.3. Ablations

We use a lightweight of BEVDetOcc [6] as our baseline,
refereed as Version A, which utilize the ResNet-50 [4] and
FPN [13] as the image encoder, and output the coarse voxel
feature with a resolution of 100× 100× 8. A simple MLP
is employed as the occupancy prediction head. For the flow
prediction, we assume the scene is static, setting all values
to zero. For Version B, we add the utilize the same back-
ward refinement as FB-Occ [11]. For Version C, we replace
the dense backward refinement of bevformer [10] with our
proposed Sparse Decoder. For Version D, we add the NeRF
supervsion into the training phase. For Version E, we ex-
tend the original single-stage model to multi-stage which
refine the coarse voxle features stage by stage. For Version
F, we incorporate information from 8 temporal frames into
the model, similar to BEVDet4D [5]. For Version G, we in-
tegrate the flow predictor into the framework. The ablation
study results are shown in Table 1.

3.4. Main Results

We utilize a lightweight model with a ResNet-50 image
backbone and an input image size of 256 × 704. This con-
figuration requires only 7.3 GB of memory for training and
achieves a RayIoU of 37.8 and an MAVE of 0.31. These
results demonstrate the potential of our proposed method.
The results are shown in Table 2.



Method RayIoU1m(%) RayIoU2m(%) RayIoU4m(%) RayIoU(%) MAVE OccScore

Version A 26.8 34.1 38.8 33.2 1.73 29.88
Version B 28.1 34.8 39.8 34.2 1.73 30.81
Version C 29.3 36.2 40.6 35.3 1.73 31.77
Version D 29.7 36.9 41.5 36.0 1.73 32.40
Version E 33.0 39.3 43.1 38.5 1.73 34.62
Version F 34.2 41.2 45.7 40.3 1.73 36.30
Version G 33.5 40.3 45.0 39.6 0.47 40.94

Table 1. 3D occupancy and flow prediction performance of different setting on the nuScenes OpenOcc [21] val set.

Bacbkone InputSize Set Memory(G) RayIoU1m(%) RayIoU2m(%) RayIoU4m(%) RayIoU(%) MAVE OccScore

R50 256×704 val 7.3 33.5 40.6 45.3 39.6 0.47 40.94
R50 256×704 test 7.3 32.4 38.5 42.3 37.8 0.31 40.89

Table 2. Main Results on the nuScenes Openocc [21] val and test set.

4. Conclusions
We propose CascadeFlow, a multi-stage sparse refinement
method designed to efficiently process coarse voxel features
and scene flow. Without using a heavy model configura-
tion or relying on test-time augmentation, model ensembles,
or post-processing, our model achieves impressive perfor-
mance in this challenge.
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