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Abstract

This technical report summarizes the second-place so-
lution for the Predictive World Model Challenge held at
the CVPR-2024 Workshop on Foundation Models for Au-
tonomous Systems. We introduce D2-World, a novel World
model that effectively forecasts future point clouds through
Decoupled Dynamic flow. Specifically, the past semantic
occupancies are obtained via existing occupancy networks
(e.g., BEVDet). Following this, the occupancy results serve
as the input for a single-stage world model, generating fu-
ture occupancy in a non-autoregressive manner. To further
simplify the task, dynamic voxel decoupling is performed in
the world model. The model generates future dynamic vox-
els by warping the existing observations through voxel flow,
while remained static voxels can be easily obtained through
pose transformation. As a result, our approach achieves
state-of-the-art performance on the OpenScene Predictive
World Model benchmark, securing second place, and trains
more than 300% faster than the baseline model.

1. Introduction

The predictive world model aims to forecast future states
using past observations, playing a crucial role in achiev-
ing end-to-end driving systems. In the CVPR 2024 Pre-
dictive World Model Challenge, participants are required to
use past image inputs to predict the point cloud of future
frames. This challenge presents two main difficulties: The
first is how to effectively train on large-scale data. Given
that the OpenScene dataset [2] contains 0.6 million frames,
the designed model must be efficient. The second challenge
is how to predict faithful point clouds through sore visual
inputs.

To address these issues, we designed a novel solution
that extends beyond the baseline model. Regarding the
Problem I, we found that the official baseline model (i.e.,
ViDAR [13]) requires very long training times because it
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uses all historical frames to predict all future frames in
an autoregressive manner. To address this, we designed
a solution that divides the entire training process into two
parts. The first part trains an occupancy prediction model
for single-frame prediction, while the second part uses past
occupancy data to predict future point clouds. Specifically,
in the first stage, we utilize an existing occupancy network,
such as BEVDet [4], which predicts semantic occupancy
by encoding both occupancy states and semantic informa-
tion within a 3D volume. In the second stage, a generative
world model takes the past occupancy results as input and
generates the future occupancy states, which are then ren-
dered into point clouds via differentiable volume rendering.
Through this training paradigm, we increased the training
speed by 200%.

Given the significant development of occupancy net-
works in the autonomous driving community recently [4, 7,
14], for the aforementioned Problem II, we focus on how
to construct a world model that maps past occupancy re-
sults to future ones. Our framework leverages the advan-
tages and potential of single-stage video prediction [9], en-
abling the prediction of multiple future volumes in a non-
autoregressive manner. Moreover, we found that directly
predicting the occupancy of each frame results in unsatis-
factory performance due to the majority of the voxels being
empty. To address this issue, we use the semantic informa-
tion predicted by the occupancy network to decouple vox-
els into dynamic and static categories. The world model
then only predicts the voxel flow of dynamic objects and
warps these voxels accordingly. For static objects, since
their global positions remain unchanged, we can easily ob-
tain them through pose transformation. By leveraging the
above components, D2-World surpasses the baseline model
by a large margin, achieving a chamfer distance of 0.79 with
a single model and securing 2nd place in this challenge.

2. Proposed Method
Our method comprises two stages, and the overall architec-
ture is depicted in Fig. 1. Given historical N camera im-
ages with T timestamps, the first stage predicts occupancy
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Figure 1. The overall pipeline of D2-World. In the first stage, we train a single-frame occupancy network, and in the second stage, we
train a world model that takes past occupancy as input, forecasting future point clouds.

frame-by-frame, aiming to recover a rich 3D dense repre-
sentation from the 2D images. In the second stage, we ap-
proach this as a 4D point cloud forecasting task. Instead
of forecasting the future point cloud in an inefficient au-
toregressive manner like ViDAR [13], we design a novel
and versatile 4D point cloud forecasting framework that op-
erates in a non-autoregressive manner with decoupled dy-
namic flow.

2.1. Stage I: Vision-based Occupancy Prediction

In this section, we introduce the architecture of the occu-
pancy network, which takes visual images as input and pre-
dicts the occupancy state and semantics for a single frame.
Image Encoder. The image encoder is designed to encode
the input multi-camera 2D images into high-level features.
Our image encoder comprises a backbone for high-level
feature extraction and a neck for multi-resolution feature
aggregation. By default, we use the classical ImageNet pre-
trained ResNet-50 as the backbone in ablation studies, and
Swin-Transformer-B [8] as the backbone for submission.
Although employing a stronger image backbone can en-
hance prediction performance, we considered the trade-offs
between resource usage and training time, and ultimately
decided against using huge backbones such as InternImage-
XL [11].
View Transformation. We utilize LSS [4] for view trans-
formation, which densely predicts the depth of each pixel
through a classification method, allowing us to project the
image features into 3D space. Moreover, to introduce the
temporal information in our model, we adopt the technique
proposed in [6], dynamically warping and fusing one his-
torical volume feature to produce a fused feature.
Ocupancy Head. We adopt the semantic scene comple-
tion module proposed in [12] as our occupancy head, which
contains several 3D convolutional blocks to learn a local ge-
ometric representation. The features from different blocks

are concatenated to aggregate information. Finally, a linear
projection is utilized to map the features into C0 dimen-
sions, where C0 is the number of classes.
Losses. To alleviate the class-imbalance issue in occupancy
prediction, we utilize class-weighted cross-entropy and Lo-
vasz losses. Our multi-task training losses are a combina-
tion of occupancy prediction loss and depth loss.

2.2. Stage II: 4D Occupancy Forecasting

In this section, we introduce the process of future point
cloud forecasting. The framework consists of an occupancy
encoder, a flow decoder, flow guided warping and refine,
and a rendering process.

Initially, the 3D occupancy data is preprocessed into
spacetime tokens. The spatial-temporal transformer effec-
tively captures the spatial structures and local spatiotem-
poral dependencies within these tokens. Following the en-
coding of historical tokens, the flow decoder is employed
to predict future flow in each voxel grid. Then, warping
and refinement generate the final occupancy density. To
fully leverage the temporal information across the entire
sequence, we utilize a non-autoregressive approach for de-
coding, which achieves impressive forecasting performance
alongside high efficiency. Finally, a differentiable volume
rendering process is used to generate the point cloud from
the predicted occupancy.
3D Occupancy Encoding. Given a sequence of historically
observed Nh frames 3D occupancy OT−Nh:T , where each
occupancy Oi ∈ RH0×W0×D0 , we first encode the occu-
pancy sequence into spacetime tokens. Here, H0, W0 and
D0 represent the resolution of the surrounding space cen-
tered on the ego car. Each voxel is assigned as one of C0

classes, denoting whether it is occupied and which semantic
category it is occupied with.

To reduce the computational burden, we transform the
3D occupancy in the BEV representation. Take a single-
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Figure 2. Inner structure of SALT & warping and refinement.
(a) The detailed structures of SALT, which replace the MLP and
FFN (Feed Forward Network) in vanilla transformer with 2D con-
volutions and 3D convolutions respectively for capturing spatial-
temporal dependencies. (b) We decouple the flow with the dy-
namic and static flow and warp the feature of current frame for
forecasting the future frame. The refinement module refines the
coarse warping features.

frame occupancy as an example, it first uses a learnable
class embedding to map the 3D occupancy into occupancy
embedding ŷ ∈ RH0×W0×D0×C . Then, it reshapes the 3D
occupancy embedding along the height dimension to ob-
tain a BEV representation ỹ ∈ RH0×W0×DC . The BEV
embedding then is decomposed into non-overlapping 2D
patches yp ∈ RH×W×C′

, where H = H0/P , W = W0/P ,
C ′ = P 2 · C0, and P is the resolution of each image patch.
After that, a lightweight encoder composed of several 2D
convolution layers, i.e., Conv2d-GroupNorm-SiLU, is fol-
lowed to extract the patch embeddings. After considering
the sequence of patch embeddings, we obtain the historical
occupancy spacetime tokens y ∈ RNh×H×W×C .
Ego Pose Encoding. We represent the ego pose as relative
displacements between adjacent frames in the 2D ground
plane. Given the historical ego poses, we employ multiple
linear layers followed by a ReLU activation function to ob-
tain the ego tokense ∈ RNh×C .
Spatial-Temporal Transformer. The spatial-temporal
transformer jointly model the evolution of the surrounding
scene and planning the future trajectory of the ego vehicle.
Inspired by previous works on video prediction [3, 9, 10],
we incorporate several spatial-aware local-temporal (SALT)
attention blocks within the Spatial-Temporal Transformer.
As shown in Fig. 2(a), in each SALT block, 2D convolution
layers are first utilized to generate the query map and paired
key-value embeddings for the spacetime tokens, effectively
preserving structural information through this spatial-aware
CNN operation. Subsequently, the standard multi-head at-
tention mechanism is employed to capture the temporal cor-

relations between tokens. This approach allows for the
learning of temporal correlations while preserving the spa-
tial information of the sequence. Furthermore, we replace
the traditional feed-forward network (FFN) layer with a 3D
convolutional neural network (3DCNN) to introduce local
temporal clues for enhanced sequential modeling.
Decoupled Dynamic Flow. As illustrated in Fig. 1 and
Fig. 2(b), we design a decoupled dynamic flow to sim-
plify the occupancy forecasting problem. Specifically, the
flow decoder—which comprises multiple stacked SALT
blocks—processes the encoded historical BEV features and
forecasts the absolute future flows with respect to the cur-
rent ego coordinate. Utilizing the occupancy semantics, we
decouple the dynamic and static grids, forecasting the fu-
ture voxel features via the warping operation. For the dy-
namic voxels, we transform the absolute flow for each fu-
ture timestamp using the future ego poses, ensuring align-
ment with the current frame. For the static ones, we directly
transform them through future ego poses. Finally, we apply
a refinement module composed of several simple CNNs to
enhance the coarse warped features.
Rendering & Losses. We utilize the same rendering pro-
cess and losses as ViDAR [13] for optimizing the point
cloud forecasting, which is a ray-wise cross-entropy loss
to maximize the response of points along its corresponding
ray. For pose regression, we use L1 loss during the training.

3. Experiments

3.1. Experimental Setups

Dataset. We conduct our experiments on the OpenScene
dataset [2], which is derived from the nuPlan dataset [1].
Due to some scenes in OpenScene lacking corresponding
occupancy labels, we ignore these scenes during our ex-
periments. For submission, the challenge utilizes an online
server that provides historical images along with normal-
ized ray directions for point forecasting.
Metric. For this challenge, model evaluation is con-
ducted using the Chamfer Distance (CD) [5]. The Cham-
fer Distance quantifies the similarity between predicted
and ground-truth point clouds by computing the average
nearest-neighbor distance from points in one set to those
in the other set, in both directions.
Training Strategies. During the training process, both
stages are trained with AdamW optimizer with gradient
clipping and a cyclic learning rate policy. The initial learn-
ing rates a 2e−4 and 1e−3 for stage I and stage II, respec-
tively. In stage I, we utilize a total batch size of 24, dis-
tributed across 24 NVIDIA V100 GPUs. In stage II, the
total batch size is reduced to 16, leveraging 16 NVIDIA
V100 GPUs. For the ablation studies, stage II is trained us-
ing 8 NVIDIA V100 GPUs with a total batch size of 8. Both
stages are trained for 24 epochs.



Table 1. Poin cloud forecasting performance. Best results for each setting are highlighted in bold. D2-World vanilla denotes the model
without decoupled dynamic flow.

Method Training Split Test Split Chamfer Distance (m2) ↓
0.5s 1.0s 1.5s 2.0s 2.5s 3.0s Avg

ViDAR [13] (baseline) 1/8 Mini Mini 1.34 1.43 1.51 1.60 1.71 1.86 1.58
D2-World vanilla (ours) 1/8 Mini Mini 0.51 0.83 0.87 0.94 1.01 1.10 0.89
D2-World (ours) 1/8 Mini Mini 0.39 0.74 0.73 0.75 0.80 0.87 0.71
ViDAR [13] (baseline) Mini Online Server 1.32 1.41 1.49 1.60 1.73 1.93 1.59
D2-World vanilla (ours) Mini Online Server 1.19 1.47 1.50 1.57 1.65 1.79 1.53
D2-World vanilla (ours) Full Online Server 0.57 0.93 0.91 0.91 0.92 0.97 0.87
D2-World (ours) Full Online Server 0.56 0.69 0.78 0.84 0.89 0.99 0.79

Table 2. Training efficiency comparisons. All experiments are
trained in 8 GPUs with 24 epochs on 1/8 mini training set. † indi-
cates the efficient version of ViDAR with inferior performance.

Method Hours GPU Mem.
ViDAR [13] (total) 23.50 63G
ViDAR [13] (total) † 18.50 38G
D2-World (stage-I) 2.00 23G
D2-World vanilla (stage-II) 3.10 28G
D2-World (stage-II) 5.14 32G
D2-World (total) 7.14 32G
Proportion 30% 51%

Network Details. For stage I, the input image resolution is
512×1408 incorporating common data augmentation tech-
niques such as flipping and rotation, applied to both the im-
ages and the 3D space. The resolution of the generated 3D
voxel grid is 200× 200× 16. Prior to feeding the predicted
occupancy into stage II, we apply grid sampling operations
to align the occupancy annotations from the range of [-50m,
-50m, -4m, 50m, 50m, 4m] to the LiDAR point cloud range
of [-51.2m, -51.2m, -5.0m, 51.2m, 51.2m, 3.0m].

3.2. Quantitative Results

Main Results & Ablation Study. The main results are pre-
sented in Tab. 1. In addition to showing the overall per-
formance of our model (D2-World), we also demonstrate
the performance of our model without decoupled dynamic
flow (D2-World vanilla). Our method demonstrates su-
perior performance across all timestamps when compared
to the baseline model, with further performance enhance-
ments observed upon the introduction of the decoupled dy-
namic flow. Our best submission ranks 2nd on the leader-
board, achieving a Chamfer Distance (CD) of 0.79, with
both stages trained on the full dataset.
Training Efficiency. To further validate the efficiency of
our approach, we compare training hours and GPU memory
usage across different models, as shown in Tab. 2. The base-
line method, ViDAR, requires up to 63 GB of GPU memory
and 23.50 hours for training. Even its efficient version [13],
which does not supervise all future frames, still demands
high GPU memory (38 GB) and considerable training time
(18.5 hours). In contrast, although our method necessi-
tates pre-training an occupancy prediction model, our world
model can be trained in approximately 3 hours with only

Table 3. Results analysis. The effects of occupancy prediction
performance.

Method mIoU ↑ IoU ↑ Chamfer Distance (m2) ↓
ViDAR [13] (baseline) - - 1.54
Version A - 38.29 1.68
Version B - 38.76 1.64
Version C - 40.41 1.50
Version D - 47.68 0.89
Version E (use GT) - 100.0 0.88
Version F 17.06 40.41 1.09
Version G 18.48 47.68 0.71
Version H (use GT) 100.0 100.0 0.69

28 GB of GPU memory under the same conditions. Addi-
tionally, our model, even with the decoupled dynamic flow,
maintains reasonable training hours and GPU memory.
The Effects of Occupancy Performance. The results
using different occupancy performances are presented in
Tab. 3, where only 1/8 mini dataset are used to train. We
first train our world model with binary occupancy predic-
tion (empty and occupied) as inputs. The results from Ver-
sion A to Version E denote the performance of the world
model when the occupancy performance changes. We find
that the world model performs better when the occupancy
performance is improved.

Furthermore, introducing decoupled dynamic flow with
semantic occupancy inputs yields additional performance
enhancements, as shown in Versions F to H. Interestingly,
the performance does not significantly improve even when
ground truth occupancy with 100% mIoU and IoU is used
as input. Our analysis indicates that this is due to the inher-
ently sparse nature of point cloud forecasting, which pri-
marily requires predicting the foremost visible surfaces of
objects in the 3D space, whereas IoU evaluation for occu-
pancy encompasses the entire dense space.

4. Conclusion

In this report, we present our 2nd solution (D2-World) for
the Predictive World Model Challenge held in conjunction
with the CVPR 2024 workshop. By reformulating the visual
point cloud forecasting predictive world model into vision-
based occupancy prediction and 4D point cloud forecasting
via decoupled dynamic flow, our solution demonstrates ex-
emplary forecasting performance and significant potential.
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