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Autonomous Driving (AD) Tasks

Bounding . .
P Waypoints Trajectory @
Perception |—| Prediction Plannin
((«»)) P g éé
PN

I I

What are around? How will they go Where should | go?
in the future?

Challenge | Various weathers,
illuminations, and scenarios
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Conventional Autonomous Driving (AD) Systems

(a) Classical Approach Bounding box Trajectory
[ Perception ] ————> [ Prediction ] ————> [ Planning ]

Pros Cons

- Independent teams for module - Error accumulation, information
development loss. Results, instead of features

. are traversed across modules.
- Dataset friendly

- Quantitatively evaluation for - Openset problems
intermediate tasks - Long-tail problems
- Great interpretability

- Parallel onboard deployment
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Motivation | Why End-to-end Autonomous Driving?

(a) Classical Approach Bounding box Trajectory
[ Perception ————> [ Prediction ] ————> [ Planning ]

)

(b) End-to-end Paradigm (This Survey) backpropagation

/ Prediction \
[ Perception ] : '<\: ‘>/| Module Y | <—> | Planning |

End-to-end autonomous driving system - A suite of fully differentiable programs that:

e take raw sensor data as input
e produce a plan and/or low-level control actions as output
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Motivation | Why End-to-end Autonomous Driving?

Advantages

+ Simplicity in combining all modules into a single model that can be joint trained
+ Preventing cascading errors in modular design
+ Directly optimized toward the ultimate task, planning / trajectory prediction

+ Computational efficiency (all shared backbone), production-level friendly
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Motivation | Why End-to-end (E2E) Autonomous Driving?

- Closed-loop evaluation only available
in simulator / onboard test

- Lack of real-world data A
- Hardtointerpret /XAl ds

Human Expert

, Non E2E System
w End-to-End 2\
601

CARLA
100. CARLA leaderboard

—— Modular

40 "
Credit to Andreas : .
Geiger @ CVPR 20 ¢ Time/Readiness

Workshop 2023

Driving Score

ol

010' 707-\; o’ﬂ'v 7 . .
ke e ke Credit to Dr. Yue Cao @ Zhihu

https://leaderboard.carla.org/
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Trending | End-to-

v —

E2E Vehicle

T=5SLnm

Ashok Elluswamy &
@aelluswamy

This end to end neural network approach will result in the safest, the
most competent, the most comfortable, the most efficient, and overall,
the best self-driving system ever produced. It’s going to be very hard to
beat it with anything else!

€ Elon Musk & B @elonmusk - Aug 26
twitter.com/i/broadcasts/1...

end Autonomous Driving Industry

v12 is reserved for when FSD is
end-to-end Al, from images in to
steering, brakes & acceleration
out.

E2E Robot

Il Tesla Optimus @Tesla_ Optimus - Sep 24
i Optimus can now sort objects autonomously £

Its neural network is trained fully end-to-end: video in, controls out.

No hard-code.

Completely learning on its own.

End-to-end, video to neural network to controls.
Don’t need map data at all, only coordinates!
No cellular connection needed.

e Probably e2e as a backup module
e Massive high-quality data prevail
e Mapless is promising and feasible

on Zhihu |
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https://docs.google.com/file/d/18QAIkID2BXcEscYtbJ9SPZbQgaXOqKdO/preview
https://www.cnbc.com/2023/09/09/ai-for-cars-walter-isaacson-biography-of-elon-musk-excerpt.html?__source=iosappshare%7Corg.whispersystems.signal.shareextension
https://www.zhihu.com/question/619544346
https://twitter.com/i/broadcasts/1djxXlVLaLOxZ

Trending | End-to-end Autonomous Driving

And many others...

Driving Input, 108 dimensions

........... Representationsignal  ........... p

Learning signal for optimisation

Cameras (6 @ 25 Hz)

Q Gnss
& Basic Sat-nav Map

@

WAY V E

. Vehicle State

+ other sensing modalities
where required, e.g. RADAR

< NVIDIA.

compiex pnysics, (Al) ramc mocels

Loss function

Synthetic / Retrieval ¢
Sensor
World state data Perception Prediction Planning Control World state
fully kflown
Sim sensors v v M
Loss function  Loss function Loss function AV stack
artists physics based
() Neural network

Decoded human-interpretable
intermediate representations
»

Semantics, geometry, motion prediction.

Industry

Driving Output,

10’

dimensions

@ ‘ Motion

Plan
s

=0

~ Vehicle
0: Controls

comma.ai

e Openpilot is an open source
driver assistance system.

e Openpilot performs the functions
of Automated Lane Centering
(ALC) and Adaptive Cruise
Control (ACC) for 250+
supported car makes and models.

openpilot

on the comma 3X

https://arxiv.org/abs/2206.08176
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Application | End-to-end Autonomous Driving Industry

‘Tesla FSD Beta v12.12 rolls
out to customers

The End-to-End Approach in Autonomous Driving

Two types of end-to-end implementation:

Next-Generation
Automated Driving: the
Power of End-to-End Al

1) \BGSS 205 SE I im B im AR B 2 [ L2

B iR R R ARE

ZNKETH 2REXNATESE

Tesla website

Mobileye at CES 2024

Wayve website

XPENG (7]vJE) website

Mi (7»2£) Automobile Technological Event 2024
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Trending | End-to-end Autonomous Driving

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

TEXA

‘The University of Texas at Austin

% e Uber
TORONTO lﬂQle

BOSTON
UNIVERSITY

ETH:zurich

& FEHEASR
Y THE HONG KONG
LlM UNIVERSITY OF SCIENCE
AND TECHNOLOGY

N

A% Hori
&Ry e,

Transfuser, KING, Misconceptions, DA-RB, etc. UCLA

LBC, WoR, LAV, etc.

NMP, P3, MP3, UniSim (sort of)

LbW, SelfD, CaT, AnyD, etc.

Roach, etc

MMEN, Carl-lead, PMP, etc

GRI

VAD, VAD v2

Academia/ Hybrid

“

MetaDrive, ACO, CAT, etc

GPT-Driver, Agent-Driver, etc

GenAD, etc

SparseDrive, ADAPT, etc

Open:ayriveLab

Work from our Team
introduced later
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Roadmap | End-to-end Autonomous Driving

CARLA Launched

CARLA CARLA CARLA CARLA v2 Launched
DS: 8.94 DS: 24.98 DS: 47.65 DS:79.95 DS:0.01
_ i y nuPlan Launched
Reinforcement Policy Modality / Data Score: 0.90
Learning (RL) Distillation Advanced Structure Generation
CIRL, MaRLn, GRI WOR, Roach, TCP InterFuser, ThinkTwice Advsim, L2C
A;':CE;N Drive in A Day LBC Transfuser
@
s Agent / Reward Expert —» o Transformer - A -
B : L B='5e | BN
m Privileged = Sensorimotor ‘A‘iﬂ . Scenario -—
Input Agent Agent
1988 2016 2019 | | 2020 2021 | 2022 | 2023 2024
Summary (1/2)
°

e RL method is prevalent in the beginning (since it’s natural)

e |nput modality and more advanced structure boosts the performance

CARLA leaderboard gets much improved over the years. With new mapping /
scenarios (leaderboard v2) and nuPlan benchmark, this field got so much to do.
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Roadmap | End-to-end Autonomous Driving

Summary (2/2)

e The First Neural Net based method dates back to 2016 using Imitation Learning

e Learned policy from Experts (IL), with data augmentation, could prevail in performance

e Interpretability, with explicit design in the network stands out recently

e End-to-end design comes to obsess many merits in previous attempt
1988| 2016 2019 | | | 2020 | 2021 | | 2022 | | | 2023 2024
D | | | | r—
Expert
Drive b ﬁ)xpe S Attentlon/v s — - | Tracking [~
i rive by A Critical | Sample [ on-Poli Poli ¢ l I
o . tW';e h ] Learned s;lalti nDa?aIcy oo Y B \CE;ets & +"> m @\ / B
interface ] li | 2 3
Command ' I s/ et Segmentation g Downstream
CNN E2E CIL DARB NEAT PPGeo UniAD
BDDV CILRS AgileAD, SafeDAgger NMP, BDD-X, PlanT SelfD, ACO P3, MP3, ST-P3
Imitation Conditional 5 & i Policy Modular End-to-end
: Generalization Interpretability o :
Learning (IL) IL Pretraining Planning
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Public Opinions on Our Survey

e Paper

https://arxiv.org/pdf/2306.16927.pdf

Repo (paper collection)

https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving

Y AlexKendall &

o @alexgkendall

This is a fantastic, comprehensive and forward-looking survey of
academic literature about end-to-end machine learning for autonomous

driving. It is a very timely publication as the field is exploding with
interest right now.

I'm aligned with the paper's conclusions on open algorithmic challenges.
There's loads of insight around opportunities like world modelling,
language, foundation models and long-tail robustness. This paper also
exposes that academic literature under-appreciates significant industry
challenges right now, such as (1) safety, reward modelling and policy
alignment against human expectations and risk, or (2) the significance of
establishing a synthetic/real-world data engine for training/validation,
which are critical to the success of any machine learning system. I'd love
to see more work in these areas.

Great to see @AutoVisionGroup @francislee2020, well done!

&) Awesome Vision Group @AutoVisionGroup - Sep 18

Yann LeCun & «
@ylecun

A nice survey of end-to-end learning methods for autonomous driving.

&) Awesome Vision Group @AutoVisionGroup - Sep 18

Why are Tesla @elonmusk and Wayve @alexgkendall @Jamie_Shotton moving
towards end-to-end autonomous driving? What is the state-of-the-art in this
field? With our friends @francislee2020 we recently wrote an extensive survey

paper on this emerging topic: arxiv.org/abs/2306.16927

[1] Chen et al. End-to-end Autonomous Driving: Challenges and Frontiers. arXiv, 2023.

2023398 ik Fik B EIE

ERiE

o

WRFak
#EHBY

X E AR R REIPAMIIREIE B 2 BRARRILT:

‘SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, JUNE 2023
End-to-end Autonomous Driving:
Challenges and Frontiers
Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger and Hﬁ;yé?\g;Li
Arxivi§i%: https://arxiv.org/abs/2306.16927
AUERNXEXEENAN, FERECVPRRINAEMES TarxivE, HiTRAT—RAE

FHETRE, GREXMET, RESSAIRE, MEACKATRARMEL, BFEX
AZNNBRE, SRRRAU-BBEPABINESTIELEREGRERANS.

Join Slack Discussions!

https://join.slack.com/t/opendrivel
ab/shared invite/zt-244lqu87b-eL
onLQzle4wRkg8W8WOUIg

SBE: REFNEGR, BFEEE.
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https://github.com/OpenDriveLab/End-to-end-Autonomous-Driving
https://arxiv.org/pdf/2306.16927.pdf
https://join.slack.com/t/opendrivelab/shared_invite/zt-244lgu87b-eLonLQzle4wRkg8W8WOUlg
https://join.slack.com/t/opendrivelab/shared_invite/zt-244lgu87b-eLonLQzle4wRkg8W8WOUlg
https://join.slack.com/t/opendrivelab/shared_invite/zt-244lgu87b-eLonLQzle4wRkg8W8WOUlg
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Types of Learning

Supervised Learning:

e Dataset:{(x,y)}(x =data,y, = label) Goal: Learn mapping x —y
e Examples: Classification, regression, imitation learning, affordance learning, etc.

Unsupervised Learning:

e Dataset: {(xl.)} (xl. =data) Goal: Discover structure underlying data
e Examples: Clustering, dimensionality reduction, feature learning, etc.

Reinforcement Learning:

e Agentinteracts with environment which provides numeric reward design
e Goal: Learn how to take actions in order to maximize reward
e Examples: Learning of manipulation or control tasks (everything that interacts)

Credit to Andreas Geiger, Lecture: Self-Driving Cars
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Types of Learning for E2E AD

[

S-S
T Mk g1

= =
Data buffer

c
t t t t
Deployment Trajectory set Deployment
T i Tr+1
Behavior Cloning Inverse Optimal Control Reinforcement Learning

Imitation Learning: Learn a policy from expert demonstrations

e  Expert demonstrations are provided
e  Supervised learning problem
e  Behavior Cloning, Inverse Optimal Control (Inverse Reinforcement Learning)

Reinforcement Learning: Learn a policy through trial-and-error

e  No expert demonstrations given

e  Agentdiscovers itself which actions maximize the expected future reward
o  The agent interacts with the environment and obtains reward
o  The agent discovers good actions and improves its policy &

OpenﬂriveLab




Imitation Learning
[

Trainer Trainee
(Human Driver) (Neural Network)

Credit to Andreas Geiger, Lecture: Self-Driving Cars
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Imitation Learning in a Nutshell

Expert Trajectories Dataset Supervised Learning Test Execution

Expert trajectory

Learned Policy
S :
>‘ it e,
No data on 2 5
how to recover

Hard coding policies is often difficult — Rather use a data-driven approach!

e  Given: Demonstrations or demonstrator
e  Goal: Train a policy to mimic decision
e Variants: Behavior Cloning, Inverse Optimal Control (Inverse Reinforcement Learning)

Credit to Andreas Geiger, Lecture: Self-Driving Cars
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Imitation Learning: Trajectory or Control?

|
e Trajectory + PID
LBC/Transfuser/LAV/...

o long-term strategy
PROS o  Combined with other modules to
enhance obstacle avoidance ability

o Imperfect trajectory following
CONS ) p
o  Simple controller; Inertial problem

planned L R

o ==
trajectory s 22 N

Control
CIL/CILRS/WoR/...

End-to-end optimization; elegant structure
Utilization of advanced RL methods

Focus on current timestamp; incontinuous output
Lack of intention-related information
Coupling with vehicle dynamics, challenging to generalize

control *

- However, no clear performance gap in existing research papers we think.
- While, trajectory may be more appropriate for practical application.

[1] Wu et al. Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline. NeurIPS, 2022.
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Imitation Learning - Behavior Cloning

Behavior cloning makes I.1.D. assumption

e  Next state is sampled from states observed during expert demonstration
e  Thus, next state is sampled independently from action predicted by current policy

Expert trajectory

i i ? Learned Polic
What if x, makes a mistake? L
> ~”- '''''' .
,'::»""“\ ——
No data on 4

e Enters new states that haven’t been observed before

e New states not sampled from same (expert distribution anymore) :
. . how to recover ~ :: 24

e  Cannotrecover, catastrophic failure in the worst case N> (

What can we do to overcome this train/test distribution mismatch?

Credit to Andreas Geiger, Lecture: Self-Driving Cars

OpenﬂriveLab




Imitation Learning - Behavior Cloning

Aggregate On-Policy

Traln Rollout
Dataset Policy Enwronment —‘

Data

Rollout I
Dataset Policy Environment
Critical Samp[e On-Policy
Replay Buffer States Data

What can we do to overcome this train/test distribution mismatch?
- Data Aggregation (DAgger)

e [teratively build a set of inputs that the final policy is likely to encounter based on
previous experience. Query expert for aggregate dataset
But can easily overfit to main mode of demonstrations

e  Hightraining variance (random initialization, order of data)

DAgger with Critical States and Replay Buffer

e  Sample critical states from the collected on-policy data based on the utility they
provide to the learned policy in terms of driving behavior

e Incorporate areplay buffer which progressively focuses on the high uncertainty
regions of the policy’s state distribution

[1] Ross, et al. A Reduction of Imitation Learning and Structured Prediction on No-Regret Online Learning. AISTATS, 2011.
[2] Prakash, et al. Exploring Data Aggregation in Policy Learning for Vision-based Urban Autonomous Driving. CVPR, 2020.

Credit to Andreas Geiger, Lecture: Self-Driving Cars
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Imitation Learning - Conditional Behavior Cloning

‘|

O¢ at Ot+1

_— Controller _ _—

Idea:

Condition controller on navigation command ¢ € {left, right, straight}

High-level navigation command can be provided by consumer GPS, i.e., telling the vehicle to turn left/right or
go straight at the next intersection

This removes the task ambiguity induced by the environment

States, :currentimage Actiona, : steering angle & acceleration

[1] Codevilla et al. End-to-end Driving via Conditional Imitation Learning. ICRA, 2018.

OpenﬂriveLab




Imitation Learning - Inverse Optimal Control

State s +

Reward r R

Cost/Reward

Func.

Agent (policy)

Next state s, ,

Environment

Inverse Optimal Control (Inverse Reinforcement Learning):

e Agentobserves environment state s, at time t
e Agentsendsaction a,at time 1, based on the cost/reward function, to the environment
e Environment returns the new state s, to the agent

Action a,

Loss

D

Dataset

OpenﬂriveLab



Imitation Learning - Inverse Optimal Control

High-level Command

ot
Representations Go Straight

Sampler
, | Protocols Aggregated
N Cost Map \r
Rule-based 4

- GRU \ To
Predicted / / > > | Refinement > %
Future States ‘ %4 3 o

g ol
§t+1 " g H horizons
Xe+2

Learning-based

x |
t+H i Front-view
2 Vision Features

Objective cost function:

e Safety Cost: not collide with other detected objects within future periods; not overlap with road boundaries;
maintain a safe distance at high velocity

e Comfort and Progress: penalize large lateral acc., jerk, or curvature; reward forwarding to designated
directions

e Learned Cost Volume: unspecified terms — emergent ability?

[1] Hu et al. ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning. ECCV, 2022.
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Imitation Learning - Summary

Advantages of Imitation Learning, esp. Behavior Cloning

Easy to implement

Cheap annotations (just driving while recording visual sensor and actions)
Entire model trained end-to-end

Conditioning removes ambiguity at intersections

Challenges of Imitation Learning, esp. Behavior Cloning

Behavior cloning uses L.I.D. assumption which is violated in practice

No memory (can’t remember speed signs, etc.)

Mapping is difficult to interpret (“black box”), despite visualization techniques
More discussion later.

Credit to Andreas Geiger, Lecture: Self-Driving Cars
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Reinforcement Learning

Agent (policy)

Reward r R

State s . Action a,

Next states, ,

Environment

Reinforcement Learning:

e Agentobserves environment state s, at time t
e Agentsends action a, at time t to the environment
e Environment returns the reward r_ and its new state s_, to the agent

Credit to Andreas Geiger, Lecture: Self-Driving Cars

OpenﬂriveLab




Reinforcement Learning

Objective: Balance pole on moving cart
State: Angle, angular vel,, position, vel.
Action: Horizontal force applied to cart
Reward: 1if pole is upright at time t

B

Atari Games

Cart Pole Balancing

Objective: Make robot move forward
State: Position and angle of joints
Action: Torques applied on joints
Reward: 1 if upright & forward moving

Robot locomotion (in mujoco)

Self-driving (in gym/CarRacing)

Credit to Andreas Geiger, Lecture: Self-Driving Cars

Objective: Maximize game score
State: Raw pixels of screen (210x160)
Action: Left, right, up, down

Reward: Score increase/decrease at t

Obijective: Lane following
State: Image (96x96)

Action: Acceleration, Steering
Reward: - per frame, + per tile

OpenﬂriveLab




Reinforcement Learning

Advantages of Reinforcement Learning

e  Straightforward idea, early attempts
e  Easy be trained with privileged simulator information
e  Exploration & Exploitation relieve causal confusion

Challenges of Reinforcement Learning

e Largesearch/state-action space (), especially in outdoor driving scenarios; long training times
e DeepQ-Learning
o  Uniform sampling from replay buffer — all transitions equally important
o  Simplistic exploration strategy
o  Actionspace is limited to a discrete set of actions (otherwise, expensive test-time optimization required)
e  Trained in simulation mainly. Sim2Real gap.
e  Morediscussion later.

Credit to Andreas Geiger, Lecture: Self-Driving Cars

OpenﬂriveLab
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Benchmarking

Real-world Online/Closed-loop

CARLA

>

NVIDIA.

2-NUSCENES
WAYMO QQGO lgn

e

HUAWEI
1BE
AULDS
Metric: Metric:
e  DrivingScore = e L2=|GT-Pred]|
Route Completion * TT Infraction Penalty e Collision rate

Autonomous Racing

Open.ﬂriveLab




Benchmarking - Closed-loop Simulation

Parameter Init. Traffic Sim. Vehicle Dyn. Sim.

Irregular Maneuvers

Procedural Generation Graphic-Based

e  Sample probabilistic
distribution of simulation
properties with algorithms

e Hand-tuned rules & params.

e 3D models with assets, plus
physical rendering process and
sensors modeling

e  Physical occlusion, shadows,
reflections, etc.

3-Point Turn U-Turn Non-Compliant

Complex Interactions

Yielding Merging Passing

Data-Driven TrafficSim, CVPR'21
e Samplefromlogs Rule-Based Data-Driven Simplified Vehicle Model
e  Generate by models e Intelligent Driver Model e NeRF&3D GaussianSplatting o ynicycle / Bicycle model
(IDM) (proves to be effective) * ‘GAN & D’iffusion i e  Multi-body system
Data-Driven Data-Driven

e  Generate by models
e  Waymo Sim Agent

° NN-based learned from
data

UniSim, CVPR’23

OpenﬂriveLab




Benchmarking - Open-loop Evaluation

Current prevailing end-to-end autonomous driving methods commonly use nuScenes
for open loop evaluation of their planning behavior.

However:

e NuScenes dataset, characterized by relatively simple driving scenarios, leads to
an underutilization of perception information in end-to-end models.

25-20-15-10 -5 0 5 10 15 20
(a) Trajectory Heatmap (b) Typical Scene of nuScenes

[1] Li et al. Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? CVPR, 2024.

Open.ﬂriveLab




EgoStatus | Motivation

Current prevailing end-to-end autonomous driving methods commonly use nuScenes
for open loop evaluation of their planning behavior.

However:

e NuScenes dataset, characterized by relatively simple driving scenarios, leads to
an underutilization of perception information in end-to-end models.

e AD-MLP paper recently points out that a simple MLP network can also achieve
state-of-the-art planning results, relying solely on the ego status information.

[1] Li et al. Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? CVPR, 2024.

Open.ﬂriveLab




EgoStatus | Motivation

Current prevailing end-to-end autonomous driving methods commonly use nuScenes
for open loop evaluation of their planning behavior.

However:

e NuScenes dataset, characterized by relatively simple driving scenarios, leads to
an underutilization of perception information in end-to-end models.

e AD-MLP paper recently points out that a simple MLP network can also achieve
state-of-the-art planning results, relying solely on the ego status information.

v

Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving?

[1] Li et al. Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? CVPR, 2024.
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EgoStatus | Conclusion

e The planning performance of existing open-loop autonomous driving models based on
nuScenes is highly affected by ego status

e Existing planning metrics fall short of fully capturing the true performance of models.

g

The development of more appropriate datasets and metrics represents a more critical
and urgent challenge to tackle

[1] Li et al. Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? CVPR, 2024.

OpenﬂriveLab
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Key Challenges

(‘ ”)
o

Sensing and Input

World Modeling for

Modalities Visual Abstraction MBRL Multi-task Learning Policy Distillation
ToDAY'S
R P Focus
JEE @ 1so 2 €
NS
2J1=) L=
Interpretability Safety Guarantee Causal Confusion Robustness

and Generalization

Open.ﬂriveLab




Dilemma over Sensing and Input Modalities

(a) Input modality (b) Fusion strategy

Visual ((‘,))3 o ¥ v
Sensors 5 ‘ - sV

<—

HD Maps Early Fusion
Navigation ﬁ @@ },
i | :M:' : —
Signal " || Y- i 9,.6".\. m
i Middle Fusion
Vehicle 5? (;) |
States 2 é

Language : Ac) | B ® - fused

fused
feature

Instruction

Early Fusion

e  Combine sensory information before feeding it into
the feature extractor
e  Concatenation (imgs, or point-painting)

Middle Fusion

e  Separately encode inputs and then combining
them at the feature level
Transformer attention
Fusion under BEV space

Late Fusion

e  Combine multiple results from multi-modalities

Challenge: Various sensors possess distinct perspectives, data distributions (similar issues in perception tasks).
Some unique inputs such as vehicle states and navigation signals exist for E2E driving.

OpenﬂriveLab




Dilemma over Sensing and Input Modalities - Language

- deli London NW Route Clos
replaying model input ® Ready Close

What's the weather like?

it's rainy.

Do you drive differently?

Yes, | need to be more cautious due to
the rainy conditions.

Due to the rainy conditions, the road
might be slippery and visibility might be
reduced, so | need to drive more
cautiously.

Instruction: Head upstairs and walk past the piano through an
archway directly in front. Turn right when the hallway ends at Ny 4
pictures and table. Wait by the moose antlers hanging on the wall. R e e L 2023

When will you go|

Vision Language Navigation, CVPR’18 LINGO-2, arXiv'24

OpenﬂriveLab




Insight from Robotics / Embodied Al

RT-2, arXiv'23
Internet-Scale VQA + Robot Action Data Vision-Language-Action Models for Robot Control Closed-Loop
G What s happening Robot Control
P : | | Q: What should the robot
in the image? do'to<taslo? A: .. RT-2
A grey donkey walksw - | |
down the street. — - .

Put the strawberry

Q: Que puis-je faire avec ViT oo into the correct bowl

ces objets?

V. il

[Faire cuire un géteau.] ) s

Q: What should the robot

do to <task>?

De-Tokenize
Robot Action
1 ) 4
" | ATranslation = [0.1, -0.2, 0]

ARotation = [10°, 25, -7°] Co-Fine-Tune

Deploy :

Pick object that is different

e How vision-language models trained on Internet-scale data can be

incorporated directly into end-to-end robotic control tasks step by step using language (prompt).

e Goal: to boost generalization and enable emergent semantic e |sittheright way to open the language tool box as
reasoning does in Robotics for Autonomous Driving?

Key ingredient(s): huge amount of data (not public) +

e Robotic tasks naturally fits into language at dissecting

g OpenﬂriveLab
lan prompt to dissect tasks



Dilemma over Sensing and Input Modalities - Language

Outdoor Navigation

Turn and go with the flow of traffic. At the first traffic light turn left. Go
past the next two traffic light, As you come to the third traffic light you
will see a white building on your left with many American flags on it.
Touchdown is sitting in the stars of the first flag.

TOUCHDOWN, CVPR’19

° Discrete action space
(Forward/Left/Right/Stop)

e  Crowdsourcing routes or
collected from Google Maps

Linguistic Instruction

Visual
encoder
'
Vehicle
controller
End-user Input image 1

Human-to-Vehicle Advice N Textual
encoder

\_.J e.g., ‘pedestrians are in crosswalk”
=y
‘o D

control
commands

Visualizing
model’s attention

HAD, CVPR'19

without advice with advice

e  Grounding objects/areas with

human advice, and predict
control signals with attention
e  Human annotated videos

LLM-assisted E2E Driving

e R
Tk

&

G S
T

Perception and Prediction Motion Planning Results

Notable Objects:

Perception and Prediction:

- Car at (12.05,4.12), moving to (11.98, 2.30) - Car at (2.34,19.08) ...

. Potential Effects:

Ego-States: > - - Within the safety zone of the ego-vehicle ...
- Velocity: (0, 2.34) Planned Trajectory:

[(0.12,2.98), ..., (3.45,18.90)]
GPT as a

Motion Planner Language Outputs

GPT-Driver, NeurlPS Workshop’23

Language Descriptions

e  Encode perception/prediction/etc results into texts
(or tokens) and prompt with LLMs for planning and
behavior explanation

e  OR: construct visual question answering dataset to
train VLMs

Existed Opportunity: Language can provide certain high-level instructions, enhancing human-machine-interaction.
Current Challenge: LLMs (or VLMs) require long inference time, lack of quantitative accuracy and stability of outputs.

OpenﬂriveLab




Dependence on Visual Abstraction

State space / Sensor input

I" N e B =
' "(7: >

Image Point Cloud

______________________

= Decoder | = Driving Policy

Latent feature
! representations

S S

Key function:

e Compactintermediate representations
e Pre-trained visual encoders accelerate downstream training, especially for RL methods (sample efficiency)

OpenﬂriveLab




Dependence on Visual Abstraction - Representation Design

Representation forms of visual inputs

e CNNvs Transformer:
o CNNstill dominates in E2E driving than ViT. Why?
e  Bird’s-eye-view (BEV) & Occupancy grid:
o  BEVisgood for sensor/temporal fusion and facilitates downstream tasks
o 3D occupancy can capture irregular objects and used for collision avoidance
° Maps:
o  BEV segmentation, vectorized lanelines, centerlines and topology, lane segments, etc.

v . ,
\ / \\\‘\\'\\ / y
&
\‘
\.. \\ N
: \\ VAN
\ /// N
/7

Transfuser++, ICCV'23 VAD, ICCV’'23

However, if explicit representations are necessary for performance improvement is unclear. This is a debate about
modular E2E vs. scaling up “black box” models.

OpenﬂriveLab




Dependence on Visual Abstraction - Representation Learning

State space / Sensor input

______________________

f R Latent feature e :
- I TP eee i .
Iu P}y = = A e it = Decoder | = Driving Policy

L 7: -

Image Point Cloud

Current methods first pre-train the visual encoder of the network using proxy pre-training tasks.

4

There inevitably exist possible information bottlenecks in the learned representation, and
redundant information unrelated to driving decisions may be included.

Open.ﬂriveLab



Dependence on Visual Abstraction - Representation Learning

Traditional RL methods’ pretraining: abstracted information, also helpful for Sim2Real

e  Semantic segmentation
e Depthmap
VAE (Variational autoencoder)

Yl)ll — .Large-scal.e

Pre-training from large-scale vision data Policy Pre-training

Contrastive Learning Self-supervised Geometric Modeling

(a) Self-supervised Vi Policy Pre-training (b) Downstream Tasks
Consecutive frames input
ince frames barely change : <.
Eg 0 Motion T e need to E
T
. _l trinsic K N
s | Aug [ g

\
PoseNet

Policy Learning

- Visual Input
/ ) |
f T [ — —
2 _:
" a — Aug » - DepthNet a.1 Stage One Visual Encoder
L} V& (Fine-tuned)
St | : frozen J'
25D
L \ = H s = -
steering = 0.40 , BT N — (Egomotiont otometric
— Forward propagate -~ Visual Encoder - Sl ume i DTh
(Our Focus) )
W dr STOP a.2 Stage Two

ACO, ECCV'22 PPGeo, ICLR’23
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Representation Learning - ViDAR

VIiDAR Pre-training @ Multi-view @ Temporal
Geometry Modelling

Visual Point Could Forecasting , :
o e "

H “ 7 _ . . e
. o
" ' VIDAR Model {553

Multi-frame Multi-view Images .-

t+1 t+2 .
“---..____ Multi-frame Point Clouds

t t t
_,| History |_ Latent _,| Future |_[ Future |_[ Future |_,
Encoder Rendering Decoder Decoder Decoder
t t i

1
Future BEV Queries ' Future Ego-motion

77T e~

Method Detection Tracking Mapping Motion Forecasting Future Occupancy Prediction Planning
NDS1 mAP{ | AMOTAT AMOTP| IDS| | IoU-lanet IoU-roadf | minADE| minFDE| MR/ | IoU-n.t IoU-f.4 VPQ-n.t VPQ-f.1 | avgL2| avg.Col.l

UniAD | 4936  37.96 383 1.32 1054 313 69.1 0.75 1.08 0.158 62.8 40.1 54.6 339 1.12 0.27

VIDAR | 52.57 4233 42.0 1.25 991 33.2 714 0.67 0.99 0.149 65.4 42.1 57.3 364 0.91 0.23

By fine-tuning on UniAD, ViDAR boosts perception, prediction, and planning at the same time by a large
margin, providing a new solution for using large-scale unlabeled data.



Complexity of World Modeling

Agent (policy)

Agent (policy)

Reward r, Reward i
State S; Next state .., Action a, State S; Nl s, Action a,
Environment World Model

OpenﬂriveLab




Complexity of World Modeling

A Path Towards Autonomous Machine Intelligence Version, Yann Lecun

Task / Objective:

* Represent the world & Learn to predict and re-act
*  Simulate the world without REAL interaction with the world.

What happens if | go straight?

percept % ‘

OpenﬂriveLab




Trending: Recent Work on World Model

From simulated agents to
real-world driving systems

RL Agents

18.3

World Models:
Training agents inside
their dreams

(@) Control Suite (b) Atari (c) DMLab

O Vision 0 0
20.3 22.6 23.6
Dreamer V1/2/3:

Towards general agents with
scalable world models

(d) Minecraft

Driving

Open.ﬂriveLab



Trending: Recent Work on World Model

From simulated agents to
real-world driving systems

RL Agents O
18.3 20.3
World Models: Dreamer V1/2/3:

Training agents inside
their dreams

Towards general agents with
scalable world models

(@) Control Suite

Vision

(d) Minecraft

Position Paper

(by LeCun)
Elaborating the
developments of world
models percept

0 o Driving
22.6 23.6
1-JEPA:

Capturing visual knowledge
in self-supervised manner

World model to generate videos of the driving scenario. Then what?

oY

o
23.6

Scaling up world models on large
corpus of realistic driving videos

General World Model: inhouse data
collected around the globe

T=5L A
GAIA-1: 4700 hours of driving videos
collected in London

OpenﬂriveLab

Is it useful for downstream tasks? (To be validated)



Complexity of World Model

States Cost / Reward
RL Gyms - Egoagent - Success/Fail
- Other objects (static) - Intermediate Reward
- Background environment
action
PSS Autonomou -~ Ego-vehicle - Collision
S - Other vehicles, pedestrians, - Comfort
Drivin i i
g cyclists, etc (moving) B S rward
- Background environment
saactc
Complicated! Hard to define!

A video predictor?

OpenﬂriveLab




Complexity of World Model

Forms of world model

Images

Point cloud (LiDAR) and Occupancy

BEV maps

Integrated Motion Prediction and Planning
Latent model (LSTM/GRU-based, etc)

Application of world model

e  Reward for RL/Sampling/etc
e  Decode planning with Inverse Dynamics Model
e  Serve as pre-training (fine-tuned for planning)

OpenﬂriveLab




Complexity of World Model | GenAD

[
Summary: Training a billion-scale video prediction model on web-scale driving videos,
to enable its generalization across a wide spectrum of domains and tasks.

» @ @
(=) OpenDV-2K € GenAD T8 Tosks
’ - B 4 ; L =N o
2000+ hours Multimodal Driving Data Generalized Predictive Model ————— 1. Zero-Shot Generalization
e N Observed : Imagined
e ,
mﬁ] MI Diverse
Paired
YouTube Driving Videos “Texts”
AR I =
st B
« 4
(¢ 5 ”
Public Driving = S
L Datasets ) A -- -
\_ VLM / LLM y @ lterative & joint denoising ) . — .

/ 2. Language-conditioned Prediction \ 3. Action-conditioned Prediction \ [ 4. Planning

» Control with different ) 5 Control with different . __, Control with high-
. texts (command/context) >l Imagine future 1 Imagine

level command
“Turn left towards js
&

the mount ;;K 4—‘
\

Change to i .
the left lane” ; :
it lightweight | predicted
Planner Trajectory )
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Complexity of World Model | GenAD

e GenAD (5.9B) = SDXL (2.7B) + Temporal Reasoning Blocks (2.5B) + CLIP-Text (0.7B)
« Tuning the image generation model (SDXL) into a highly-capable video prediction model

a.l Stage One
Image Domain Transfer

a.2 Stage Two
Video Prediction Pre-training

>t ||

Ya
Attention f/_ >t

|
¥ X

Direction

Decoupled SA
‘ |
' - ideo-level Denoising e
Per-image Denoising | Video eve' enosing | ki
Temporal Reasoning Blocks | 7=
- : |
3 - . Keep - ! led SA
Turn Left A, & O, 1 y . ey Decouple
(a) GenAD: Two-Stage Learning [SF
* * (_zeromit_J]
Temporal Spatial Temporal Conditional Temporal
—* Reasoning Self | Reasoning Cross Reasoning FFN SRS Catsa In
Block Attn. Block Attn. Block

Language

Condition (c) Temporal

(b) GenAD Transformer Block Architecture

Causal
Masking

1 ﬂ
i
142

E
| ¢ &

+]

Reasoning Block

OpenﬂriveLab




Tasks | Zero-shot Generalization (Video Prediction)

= \ YouTube =) | Waymo

12VGen-XL & o
" Zero-shot video

prediction on unseen
datasets including
Waymo, KITTI and
Cityscapes

VideoCrafterl

DMVFN

GenAD B
(ours) Ba

12VGen-XL
VideoCrafter1

DMVFN

GenAD
(Ours)

Open..qriveLab




Tasks | Language-conditioned Prediction
I

2. Language-conditioned Prediction

Control with different )
texts (command/context) j Imagine

“Turn left towards s
the mountain”

“Change to
the left lane”

Instruct the future with
free-form texts.

“Tum rigsome parked cars, a parking lot”

Open.@ riveLab



Tasks | Action-conditioned Prediction (Simulation)

BEV Traj. Observed = | Imagined T
. nuScenes
Method ‘ Condition Action Prediction Error ()
Ground truth 0.9
GenAD text 2.54
GenAD-act text + traj. 2.02

Table 4. Task on Action-conditioned prediction. Compared to
GenAD with text conditions only, GenAD-act enables more pre-
cise future predictions that follow the action condition.

Simulate the future
differently conditioned on
future trajectory.

OpenﬂriveLab




Tasks | Planning

Control with high-
level command

Lightweight

——> Predicted
Planner

Trajectory

Method # Trainable nuScenes
Params. ADE () FDE({)
ST-P3* [20] 10.9M 2.11 2.90
UniAD* [22] 58.8M 1.03 1.65
GenAD (Ours) | 0.8M | 1.23 2.31

Table 5. Task on Planning. A lightweight MLP with frozen
GenAD gets competitive planning results with 73 x fewer train-
able parameters and front-view image alone. *: multi-view inputs.

Training process speeds up by 3400 times
compared to UniAD (CVPR Best Paper).

Open.ﬂriveLab



Vista: Generalized action conditions
]

future prediction
time -

high-level low-level

9 =

A | &> A
ommand goal point| | frajectory  angle speed

multi-modal action controls

initial frame

}02U0D g Jpadal

Control with traj & angles
(translated to commands for vis)

Forward Left

[1] Gao et al. Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability. arXiv, 2024.




ViDAR - World Model in Driving
Future Prediction Model

Carnegie _ iﬁ -
Mellon i
University =«

S2Net — Point cloud future
prediction for planning

+ Action

World Model

4D-Occ — Ego Future Tracjectory

0O

Open IRriveLab
Point Cloud &
ViDAR Visual Image

. o o
Visual Image 2022

FIERY — visual future
prediction for planning.

HEONT LEET™

FRONT RIGHT

Y
ek

—

.; ' BACK RICHT = g B

A4

2023

GAIA-1 — Text & Steering

DriveDreamer — Box &

Image & HDMap

DrivingDiffusion — Layout

OpenﬂriveLab



ViDAR - World Model in Driving

I
The First Multimodal World Model

Visual Inputs
-1s, -0.5s, Os

LIDAR Outputs
0.5s, 1s, 1.5s, 2s, 2.5s, 3s

Turn ﬁ
Left

ViDAR

Go
Forward

OpenﬂriveLab




ViDAR - World Model in Driving
[

Summary: Training multimodal world model by Visual Point Cloud Forecasting and
boosting End-to-End Autonomous Driving.

( 3D Object Detection }

- \ -
VIDAR: A Visual Autonomous Driving Pre-training Model [ Planning ]

History Visual Inputs («&») 0.27

e X 3 < B
\
AEAD =
t—n t—1 t

0.23

Visual Point Cloud Forecasting [ Point Cloud Forecasting ]
t+1
o o o o ¢ o J i
a (es@®) Future Point Cloud Predictions )
[ Multi-Object Tracking ] [ Map Segmentation ] [ Future Occupancy Prediction ] [ Motion Forecasting ]

|
421 ‘ :
il 652
82 g > Previous

38.3 I = = . 312 i—l '~ SOTA o p—
[] [] I Y B vioar e

OpenﬂriveLab




ViDAR | Future Prediction Experiments

OpenﬂriveLab




ViDAR | Different Ego Control Experiments

Visual Inputs
-1s,-0.5s, Os

LIDAR Outputs
0.5s, 1s, 1.5s, 25, 2.5s, 3s

Go
Forward

Turn
Right

Open.@ riveLab




ViDAR | Downstream Experiments

[
Mothod Detection Tracking Mapping Motion Forecasting Future Occupancy Prediction Planning

NDS 1+ mAP?T | AMOTAT AMOTP| IDS| | IoU-lanet IoU-road? | minADE| minFDE| MR] | IoU-n.t IoU-f.+ VPQ-n.t VPQ-f.t | avg.L2] avg.Col.l
UniAD | 4936  37.96 ‘ 38.3 1.32 1054 ’ 313 69.1 ’ 0.75 1.08 0.158 62.8 40.1 54.6 33.9 ’ 1.12 0.27
ViDAR | 5257 4233 | 420 1.25 991 | 332 71.4 0.67 0.99 0.149 | 654 42.1 57.3 36.4 0.91 0.23

By fine-tuning on UniAD,

ViDAR boosts perception, prediction, and planning at the same time by a large margin, providing a new
solution for using large-scale unlabeled data.

OpenﬂriveLab




Reliance on Multi-task Learning

Multi-task learning (MTL) : Jointly perform several related tasks based on a
shared representation through separate branches/heads.

m Challenges

e Significant computational cost reduction e  The optimal combination of auxiliary tasks
e  Related domain knowledge is shared within and the appropriate weighting of their losses
the shared model e  Construct large-scale datasets with multiple

types of aligned and high-quality annotations

Typical multi-tasks in E2E driving:

e  Earlyworks:
o  Semantic segmentation: high-level understanding
o  Depth estimation: 3D geometry
e  Recentworks:
o 3D object detection
o  BEV segmentation
o  Visual affordance, including traffic light states, distance to opposite lanes, etc

OpenﬂriveLab




Inefficient Experts and Policy Distillation

The popular “Teacher-Student” IL Paradigm

Driver

Actions

i n‘!ﬂ

Simulation Strong (a) Drivable areas (b) Desired route  (c) Lane boundaries

Ground Truth Supervisions
Actions
ML

RL Coach
(d) Vehicles (e) Pedestrians (f) Lights and stops

IL Agent

| @ i

Expert

g Privileged L
e _’[ agent J T @ S§

Feature l Strong Roach, ICCV’21

Distillation Supervision
: [y |
. | Sensorimotor | _ | @ of @4. e
agent agent
. — | sl ;
(b) Sensorimotor agent training 4 [imitation
imitation s )
e  Easetraining and better generalization (with 2 Privileged B
.. . . ‘.- ° agent
privileged information) |l
L Can be queried W|th any states, inStead Of (a) Privileged agent imitates the expert (b) Sensorimotor agent imitates the privileged agent
logged states only Learning by Cheating, CoRL'21

OpenﬂriveLab




Inefficient Experts and Policy Distillation

e Expert: Ground Truth (GT) to action - What for or How to Distillation
Gap - Critical features
e Student: Imgto action - Input gap - Casual confusion
Expert (by RL/IL/hand-rule, gt input): Student (IL etc, sensor input):
e  Not/Can't perfect, even for a certain benchmark e Not/Can't perfect, even with large-scale data and

have visually great representations

Method Input Driving Score 1
Transfuser [*©, ] Camera + LiDAR 31.0
LAV [7] Camera + LiDAR 46.5
Budenc Model Camera + LiDAR 8.9
+ Frozen Roach
Roach [57] Privileged Info. 74.2 BEVFusion * MaskZFof mer
Roach + Rule [50]  Privileged Info. 87.0 2M training data

Privileged Input Perception Result

OpenﬂriveLab




DriveAdapter

How to balance the efficiency and causal reasoning ability?

Raw Senput Reinforcement . ( Privileged Input Stage 1
' . Learning Reinforcement
| Model Q Teacher Learning
I S Model =) é i
: P . Toll % E J
(a) Direct Reinforcement Learning Efficiency :
Causal (/] |
— Masked Feature | Action
A[\gnmenti Guided
Privileged Input Stage 1 Feature
Reinforcement Frozen Teacher Model Learning
Teacher Learning with Adapters
Model =) é
H : Raw Sensor Input
: & - Perception
Raw Sensor Input ESUPGW'S'OHS Student ‘ Learning
L5 g' Student Behavior Cloning Model ‘
pdlpalile.. " Model
/ N
Stage 2 Stage 2 |
, Efficiency [/ . . Efficiency ]
(b) Teacher-Student Paradigm Causal c) DriveAdapter Paradigm Causal (/]

[1] Jia et al. DriveAdapter: New Paradigm for End-to-End Autonomous Driving to Alleviate Causal Confusion. ICCV, 2023.

Utilize the strong RL-based
privileged teacher model!

e Train a Teacher Model for
Planning by RL

e End-to-End Connected by
Adapter

e Train a Student Model for
Perception

OpenﬂriveLab




Lack of Interpretability

Summary of the different forms of interpretability

Learned Attention
Welghts

Transformer
Dense Seg /
Interpretable Depth
Tasks
ObJect Det / Pred
Interpretabili
:e pEgtEaZDty Cost Learning
or Motion Fields =8 <

Natural Action Description The car is driving
|_ forward as there is
ol Action Explananon noting to impede it.
Aleatoric / Data
Uncertainty Uncertainty
Modelin
9 Epistemic / Model
Uncertainty

They aid in human comprehension on the:

e  Decision-making processes of end-to-end
models
Perception failures
Reliability of the outputs

OpenﬂriveLab




Lack of Safety Guarantees

Safety of the intended functionality (SOTIF)

e  Applicable design, verification, and validation measures

Modular driving stacks

e  Safety-related constraints or optimizations, within
motion planning or speed prediction modules

° Integrated into E2E models as post-process steps or
safety checks

e  Detection and motion prediction results can be used in
post-processing procedures

OpenﬂriveLab




Causal Confusion

e Drivingis atask that exhibits temporal

Dimension . .
smoothness, which makes past motion
Correlation | areliable predictor of the next action.
S
- I'am braking because . e However, methods trained with
s S o I see a red light. Brake? .
, . rake multiple frames can become overly
Input image € RW*Hx3 . . e
a reliant on this shortcut. This is
Dimension referred to as the copycat problem
Correlation X' and is a manifestation of causal
- o confusion.
x 2 - 1 am braking because
Velocity € R T my speed is low. J

OpenﬂriveLab




Causal Confusion

1B
. Ot—H+1 a
Current Solutions _ I Y
e Adversarial model predicts ego’s past action — : E network — e
min-max optimization trains the model to eliminate its Ot-1 —_
past from intermediate layers 0, D network —
a —
e Random dropout £
Upweighting keyframes in the training loss, where a Fighting copycat agents in behavior cloning from observation histories, NeurlPS’ 20
decision change occurs
Predict action residuals instead of actions ° Problem: F learns to rely heavily on the information
Use stacked LiDAR points abouta, ;ine, to predicta,
Target: Remove information abouta, ;ine,
Still challenging e  Method:

o  Adversarial (to remove information) network
D predictsa, , frome,
o Emaximizes the conditional entropy H(a, ,|e.)
e Issue: removing all maybe counterproductive; the
copycat problem arises only when a, and a,,are highly
correlated

OpenﬂriveLab




Lack of Robustness
]

Source Domain Target Domain
Common
non-critical cases

/ Various rare but No data on

safety-critical cases ! how to recover

|

(a) Long-tailed Distribution

Learned Policy Expert Trajectory Simulator ——— Real world

Location A — Location B
Weather A — Weather B
Day ~ Night

Sensor A Ny v Sensor B

(c) Domain Adaptation

M

~ - ) & o
Y 3 = :
...... = £ : 2
. /i i ¥ = \ —_—
SRR e 7 e e \ Veloy ]
A 5ol s ~ - j , -
Gt g \ ’
5 T ' == s | ¢
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Lack of Robustness - Long-tail Distribution

Current Solutions

Adversarial attacks
o  Bayesian Optimization
o  Policy gradient for generation
o  Hand-crafted modification on agents’ trajectories

Hand-crafted scenarios for more diverse data in simulation, especially for OOD perception
Non-ego agents’ prediction to promote data diversity (philosophy of integrated prediction and planning)
Importance-sampling to accelerate evaluation of rare-event probabilities

Initial Scenario

KING Optimization

o—eo— FEgo Agent

o—o— Adv. Agent

Intermediate Iteration

L t::__ 7. i::_

' Fixed ' Optimized

Safety-critical Perturbation

Robust Driving

Fine-tuning

' Optimized ' Fixed

J

KING, ECCV’'22
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Foundation Models

Multimodal
NLP (LLM) (\;'L:Am::'; General CV

e Language Interpreter e Vision Abstractor
e Driving Knowledge e Auto-labeling
e any more? e any more?

OpenﬂriveLab




Foundation Models (cont'd)

Multimodal
NLP (LLM) (\;'L:Am::':)' General CV

e  Multi-modal

e Intelligence
AD System e Generalization

OpenﬂriveLab



Trending in E2EAD | Driving + Language

O Benchmark

O Perception and Understanding
O Planning

O End-to-end Planning

* Model-only, no dataset release

Q© Bubble sizes indicate data scale

Models Pre-ChatGPT Era
Dataset HAD
® BDD-X 16 Nov 19 DRAMA
30Jul 18 LT-DRJ 22Sep 22

Honda Reseaeh nsttns 0 =
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Trending in E2EAD | Driving + Language

O Benchmark

O Perception and Understanding
O Planning

O End-to-end Planning

* Model-only, no dataset release

Q© Bubble sizes indicate data scale

Models Pre-ChatGPT Era

Dataset
T HAD NuScerlles -QA

GPT-Driver
02 Oct 23

@ WAYVE
LINGO-1 DrlveGPT4
14Sep23 02 0Oct 23

N

16 Nov 19 24 Mav 23 Rank2Tell Ez!lglig\gl
\'4 ay i
BDD-X R DRAMA NuPrompt 12 Sep 23 et 25
30Jul18 I UN] 22 Sep 22 @ 08 Sep 23 ’J{RJ .E::f:;"
» R

Honda Reseaeh nsttns 0 =

£

Agent-Driver LMDrive

Mir  17Nov23
Drive Anywhere
26 Oct 23

Open IRriveLab

EBERHARD KARLS

UNIVERSITAT
TUBINGEN
DriveLM — Graph VQA

22 Dec 23
o O

12 Dec 23
(¥
DriveMLM
14 Dec 23

Reason2Drive
06 Dec 23

@ LaMPilot

07 Dec 23
@ PURDUE

UNIVERSITY.
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. . - https://github.com/OpenDrivelab/DriveLM
DriveLM | Introduction

Generalization and Interactivity in Autonomous Driving

e  Generalized to unseen sensor configuration and objects
e Regional / Global (e.g. European) regulations require explainability through interaction

Recent success in Vision Language Models

e  Goodreasoning ability, enabled by LLM
e NoBEV representation, since human do not rely on BEV

Why VLM in AD?

e Reasoning ability helps generalization
e Language output provides interactivity

[1] Sima et al. DrivelM: Driving with Graph Visual Question Answering. arXiv, 2023.

OpenﬂriveLab


https://github.com/OpenDriveLab/DriveLM

DriveLM | At a Glance

Graph Visual Question Answering
————> Object Level

I i O O © ! P, - Perception

|12A87 Yse L

QA pairs

______

o9 o i+ Answer
0 L0 i h
—> + Behavior |
[ ‘ 1 H h
! Question with | $ 1+ Motion |

DriveLM-Agent

The critical part is Graph Visual QA, upon which we build data, model and metrics accordingly
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DriveLM | At a Glance
—

Q — Question; A — Answer;

» 1 - Perception

1]
Q: What are the objects worth noting in

A: I , a
pedestrian in front of the ec

[
Q: Where might th
e pedestrian m
A: Those objects | move to the right

lane, cross the ped-crossing

Q: What are the safe actions o

car cc le e objects?

A: The ( ir should wait for

pedestrian a 1en turn right.
1

The critical part is Graph Visual QA, upon which we build data, model and metrics accordingly
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DriveLM | At a Glance

Graph Visual QA

Q: important objects

Predicted Answer Ground Truth Answer

GPT

¢ Score 3

Trajectory Prediction
Prompt: the motion

Predicted Trajectory Ground Truth Trajectory

Displacement

A Error 3

Generalization
7, nuScenes
" Unseen scenes |

—&)
sensor setting

w/o pedestrian

Unseen objects
_—

The critical part is Graph Visual QA, upon which we build data, model and metrics accordingly
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DriveLM | At a Glance
—

Graph Visual Question Answering Q - Question; A — Answer;

pedestrian in front of the ego ca

T O SO S R4 " Graph Visual QA
— |
HO S S =) [ i 2 : i Q: Wha important objects
i ! o , : H E
: O O O E Pl - Perceptlon the objects worth noting in i Predicted Answer Ground Truth Answer
""""""""""""""" t nario : Sacoped GPT o il
O O O A: i pickup (ﬂ) truck

Trajectory Prediction

Prompt: dict the motion
-
§ i n Predicted Trajectory Ground Truth Trajectory
o QA pairs i p Displacement
] he pedestrian Error — 4
z O = A: Those objects may move to the right . -

lane, cross the ped-crossing = :
eneralization

7
_____ 1 72 nuScenes
- ~ Unseen scenes
.......... 1] S
: R sensor setting
Q: What are the safe actions o
r consid i w/o pedestrian
77777777777777 cor objects? 0iPAUOSIIAN g
A: The e ir should wait for )
----------- pedestrian and the , then turn right. gpseen abjects
1

DriveLM-Agent

The critical part is Graph Visual QA, upon which we build data, model and metrics accordingly
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DrivelLM | Data

DriveLM-nuScenes
Selected Key Frames & Key Objects

| Checklist

« Factual Questions

] . Human
@ Questions v Annotator
e Sample 10% answers of
Eiror Foadback L7 ample 107 previous and next frames?
What to do? () @ aeter | Open-ended Questions
s e
Always Brake. . diversity avoid
OuamylcoheCk fixed formulaic answers.
Qualified Data
Open-ended Questions Factual Questions .
Rule-base generation
What to do? Human annotated Moving state? from GT of nuScenes

DriveLM-CARLA

@ Town Settings

Configure

CARLA

Simulator Execute Expert

Generatel Example Image

- Sensor Data | ‘
- Object Info -
- Environment T f

Fld

z

o r—

[ Rule-based QA Generation ]
!

[,;f Graph Building ]‘L @ ------
i Quality Check
Qualified Data
JObjects? ] ]Where’? I ]Aclion? ]

[Maroon car l [Flight to egol [Follow slowlyl

- To ensure the data quality, we introduce human annotation with multi-round quality check in nuScenes
- Toscale up annotation, we adopt auto-labelling in CARLA
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DrivelLM | Data

DriveLM-nuScenes
Selected Key Frames & Key Objects

| Checklist

« Factual Questions

=) : Human
@ Questions v Annotator
- answers of
L7 Sample 10% : p >
Error Feedback . previous and next frames?

What to do? (%) @ S Open-ended Questions
— —
Always Brake.

diversity avoid

Quality Check fixed formulaic answers.

1@
Qualified Data
Factual Questions

Open-ended Questions

What to do?

Rule-base generation

Moving state? from GT of nuScenes
Parked.

Human annotated

multi-round quality check in nuScenes

DriveLM-CARLA

@ Town Settings

Configure

CARLA €9
Simulator Execute Expert

€

Generatel Example Image
- Sensor Data |
- Object Info -
+ Environment T = -
o r—

[ Rule-based QA Generation ]

Fld

z

{
[a}f Graph Building ]& @ o
Quality Check

¢ Qualified Data
JObjects? ] ]Where’? I ]Aclion? ]

[Maroon car l {Flight to egol [Follow slowlyl

To ensure the data quality, we introduce human annotation with

- Toscale up annotation, we adopt auto-labelling in CARLA

Object Identification
Position & State

Important

Object
Lane &
Map

Distribution
of Questions Traffic
Signs

= Perception = Prediction = Planning

Diversity matters, spanning from
perception to prediction and planning
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DrivelLM | Agent

DriveLM Agent

[ Perception ] (a) (A %= -

Logical Dependency

O—r
\/7/ ©

Scene Image {L

' v

% Perception Prediction Planning Behavior Motion C) Context

- % General and scalable VLM architecture - X Fine-tuned end-to-end for planning

- & Web-scale pre-training - ¢ Interpretable and interactive
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DrivelLM - Experiments

Method Behavior Motion Behavior (B) Motion (M)
Context Context | Acc. T Speed! Steer? | ADE| FDE|

Command Mean - - - - - 7.98 11.41
UniAD-Single - - - - - 4.16 9.31
BLIP-RT-2 - - - - - 2.78 6.47

None B 35.70 43.90 65.20 2.76 6.59
DriveLM-Agent Chain B 34.62 41.28 64.55 2.85 6.89

Graph B 39.73 54.29 70.35 2.63 6.17
Conclusion:

e  Trained on DriveLM-Data (huScenes-based),
DriveLM-Agent (ours) gains better zero-shot ability on
Waymo scenarios, overpassing other methods by a large
margin.
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DrivelLM - Experiments

Perception

Method Behavior Motion Behavior (B) Motion (M)
Context Context | Acc. T Speed! Steer? | ADE| FDE|

Command Mean - - - - - 7.98 1141
UniAD-Single - - - - - 4.16 9.31
BLIP-RT-2 - - - - - 2.78 6.47

None B 35.70 43.90 65.20 2.76 6.59
DriveLM-Agent Chain B 34.62 41.28 64.55 2.85 6.89

Graph B 39.73 54.29 70.35 2.63 6.17
Conclusion:

e  Trained on DriveLM-Data (huScenes-based),
DriveLM-Agent (ours) gains better zero-shot ability on
Waymo scenarios, overpassing other methods by a large (a] : 3 , ]_{Q
margin. ‘ : >

Conclusion: (

e  Qualitative result shows that
DriveLM-Agent does understand the
unseen scenarios in some way. [ ]—>[
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DrivelLM - Limitation

R

{ e
§TZ

Driving-specific Inputs

DriveLM-Agent cannot handle
common setting such as LiDAR or
multi-view images as input, limiting
its information source.

==

Closed-loop Planning

DriveLM-Agent is evaluated under
an open-loop scheme, while
closed-loop planning is necessary
to seeif it can handle corner cases.

0\ (O
« 500

2

Efficiency Constraints

Inheriting the drawbacks of LLMs,
DriveLM-Agent suffers from long
inference time, which may impact
practical implementation.
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One-page Takeaway

End-to-end Autonomous Driving

e  Challenge: Generalization & Explainability
e  Recent trend: use vision language model to embed “world knowledge” to solve challenges

DriveLM: Driving with Graph Visual Question Answering

e  Use Graph VQA as a proxy task to mimic human’s driving logic
e  Some good result under zero-shot setting, but still far from claiming good generalization
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System 1&2
SYSTEM 1 SYSTEM 2

Intuition & instinct Rational thinking

Unconscious Takes effort
Fast Slow
Associative Logical
Automatic pilot Lazy
Indecisive

System 1: fast, automatic, frequent, emotional, stereotypic, unconscious

e Determine that an object is at a greater distance than another
° Drive a car on an empty road

System 2: Slow, effortful, infrequent, logical, calculating, conscious

e  Look for the woman with the grey hair
e Parkinto atight parking space

[1] Daniel Kahneman. Thinking, Fast and Slow. 2011.
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System 1&2

Sequence of Images

Idea

Scene Description

DriveVLM

Large Vision Language Model

Scene Analysis

Hierarchical Planning

(=9 <SYSTEM> Describe the
driving conditions.

<DRIVLEVLM>
‘Weather: cloudy.

Road type: suburban.

Time: Daytime.

Lane condition: right lane
impassable, left lane passable.

Critical objects: police car at
[(x1, y1), (x2,y2)]......

-
@ <SYSTEM> Matched objects:
police car, history trajectory:xxx.
Unmatched objects: ...

Describe the critical objects and their
influence on the ego-vehicle.

<DRIVLEVLM>
Characteristics: Parking on the right
side of the road.

Influence: Blocking the right lanc and
indicating a potential for accidents or
other incidents.

Summarized Analysis: ...

(=8 <SYSTEM> Ego state and
historical trajectory are [...],
determine meta-actions, decisions,
and plan future waypoints.

<DRIVLEVLM>
Meta-actions: [slow down, shift
slightly to the right, go straight at a
constant speed].

Decision: Slow down and shift
slightly to the right to overtake the
barrier and then go straight at a
constant speed.

Waypoints: [(x1, y1), ..., (xn, yn)]. )

Matching

3D Perception

Prompting

DriveVLM-Dual

Motion Prediction

Traditional Pipeline

Incorporate results from the traditional pipeline to LVLM, as prompts

Chain-of-thought VLM

Trajectory
Refinement

Trajectory Planning

Low Frequency

2D

High Frequency

Take the low frequency VLM planning output as a reference to refine traditional trajectory planning (selectively attend to the

additional information)

[1] Tian et al. DriveVLM: The Convergence of Autonomous Driving and Large Vision-Language Models. arXiv, 2024.
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