

关于我

蔡盼盼 上海交通大学 清源研究院

教育背景

 2007 - 2011
 浙江大学
 学士

 2011 - 2016
 新加坡南洋理工大学
 博士

工作经历

 2017 - 2020
 新加坡国立大学
 博士后

 2021 - 2022
 新加坡国立大学
 高级博士后

 2022 至今
 上海交通大学
 副教授、博导

 2022 上海市领军人才(海外)

2024-2027 机器人顶刊T-RO编委

自动驾驶能力堆栈

场景理解

场景里有什么元素? 是什么实体? 具有什么行为? 将如何与自车交互?

决策规划

自车应当采取什么行为?

轨迹规划

自车应当采取什么运动轨迹?

运动控制

应当如何控制车辆?

模块化系统 (RobotTaxi)

模块化系统(RobotTaxi)

轨迹规划

运动控制

基于对城市环境的结构化模型进行显式的推理、规划与决策

模块化系统(RobotTaxi)

 场景
 轨迹

 景规
 规划

Planning & control Localization & map provision Environment & self perception Road-level Road-level Navigation localization & map provision environment modeling Exec. mon. Macroscale **→** Road network modeling Road network localization Mission planning map provision Road topology Traffic flow (road-level) identification identification Lane-level Context Guidance Communication (HMI/V2X) localization & map provision modeling sensors Exec. monitoring Context/scene modeling Goals & value specific context selection & aug. La. cros. Situation assessment La. cha. Mesoscale Lane network Self represen-tation Driving Localization localization map provision Scenery Dyn. env. Parking (lane-level) modeling modeling Feature-level Feature extraction and Stabilization localization & map provision model-based filtering Lane tracking TS & TL state est. Dynamic element tracking Feature extrac. monitor Feature updating Exec. monitoring Self -ing Trajectory planning Lane marking & Microscale landmark map localization Data filtering Occu-pancy grid (within lane) provision Low level control Environment Vehicle Actuators sensors sensors

模块化系统(RobotTaxi)

场 景 理 解

決策 规划 划

运动控制

模块化系统面临的挑战

非结构化场景: 难以对环境结构进行提前建模或现场理解的场景

显式场景理解 具有长尾问题

端到端系统

通过从数据中直接学习,解决显式场景理解带来的系统瓶颈

场景 规划 短知 超

端到端系统面临的挑战

安全性、可靠性:神经网络的决策无法确保安全性和一致性,缺乏可解释性

ID	Method	Ego Status		L2 (m) ↓				Collision (%) ↓				Intersection (%) ↓			ckpt. source	
		in BEV	in Planer	1s	2s	3s	Avg.	ls	2s	3s	Avg.	1s	2s	3s	Avg.	ckpt. source
0	ST-P3	×	Х	1.59 [†]	2.64†	3.73 [†]	2.65	0.69 [†]	3.62 [†]	8.39 [†]	4.23 [†]	2.53 [†]	8.17 [†]	14.4 [†]	8.37 [†]	Official
1	UniAD	X	×	0.59	1.01	1.48	1.03	0.16	0.51	1.64	0.77	0.35	1.46	3.99	1.93	Reproduce
2	UniAD	1	×	0.35	0.63	0.99	0.66	0.16	0.43	1.27	0.62	0.21	1.32	3.63	1.72	Official
3	UniAD	1	/	0.20	0.42	0.75	0.46	0.02	0.25	0.84	0.37	0.20	1.33	3.24	1.59	Reproduce
4	VAD-Base	X	×	0.69	1.22	1.83	1.25	0.06	0.68	2.52	1.09	1.02	3.44	7.00	3.82	Reproduce
5	VAD-Base	1	×	0.41	0.70	1.06	0.72	0.04	0.43	1.15	0.54	0.60	2.38	5.18	2.72	Official
6	VAD-Base	1	✓	0.17	0.34	0.60	0.37	0.04	0.27	0.67	0.33	0.21	2.13	5.06	2.47	Official
7	GoStright	-	/	0.38	0.79	1.33	0.83	0.15	0.60	2.50	1.08	2.07	8.09	15.7	8.62	-
8	Ego-MLP	-	✓	0.15	0.32	0.59	0.35	0.00	0.27	0.85	0.37	0.27	2.52	6.60	2.93	
9	BEV-Planner*	×	Х	0.27	0.54	0.90	0.57	0.04	0.35	1.80	0.73	0.63	3.38	7.93	3.98	-
10	BEV-Planner	X	×	0.30	0.52	0.83	0.55	0.10	0.37	1.30	0.59	0.78	3.79	8.22	4.26	-
11	BEV-Planner+	1	X	0.28	0.42	0.68	0.46	0.04	0.37	1.07	0.49	0.70	3.77	8.15	4.21	_
12	BEV-Planner++	1	✓	0.16	0.32	0.57	0.35	0.00	0.29	0.73	0.34	0.35	2.62	6.51	3.16	-
-			\					\						/		

可扩展性挑战!

大规模交互场景: 与大量交通参与者的实时交互

过度激进: 在未充分考虑各种风险的情况下,做出草率的行为

过度保守: 在各类风险下自车不敢作为, 导致交通拥堵与混乱

大规模交互场景与可扩展性挑战

模块化系统

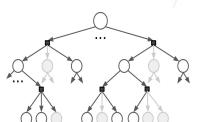
场景理解

决策规划

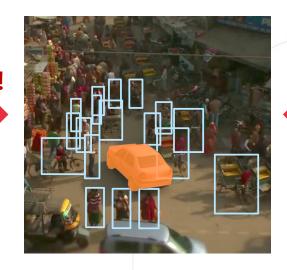
轨迹规划

运动控制

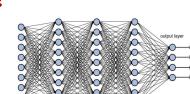
规划



计算量!



数据量!



学习

端到端系统

场景理解

决策规划

轨迹规划

运动控制

理想的自动驾驶系统?

安全性、舒适性、解释性

模块化通路

场景理解

决策规划

轨迹规划

运动控制

模块化与端到端的融合

端到端通路

场景理解

决策规划

轨迹规划

运动控制

解决场景理解长尾问题

模块化系统与端到端系统的融合

场景理解

决策规划

轨迹规划

运动控制

场景理解

决策规划

轨迹规划

运动控制

保障局部运动的安全性与舒适度

场景理解

决策规划

场景理解

轨迹规划

运动控制

保障全局行为 的安全性与舒 适度 场景理解

决策规划

场景理解

轨迹规划

运动控制

保障复杂交互 的安全性与舒 适度 场景理解

决策规划

轨迹规划

运动控制

自动驾驶决策规划

Step 1: 分析问题结构

Step 2: 设计规划算法

Step 3: 实用算法优化

自动驾驶决策规划

Step 1: 分析问题结构

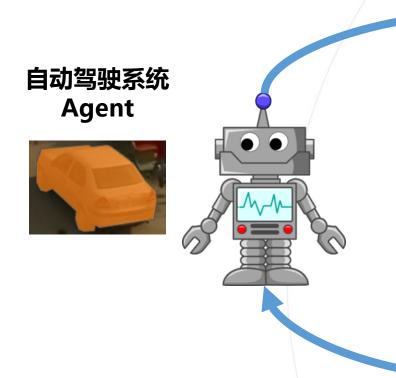
Step 2: 设计规划算法

Step 3: 实用算法优化

自车

环境

问题的抽象建模 (上帝视角)



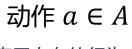
动作 Action

感知 Perception

物理世界 World

马尔科夫决策过程(Markov Decision Process)

MDP 模型具有5个元素: $< S, A, T, R, \gamma >$ 状态空间、动作空间



动作 a 表示自车的行为

底层行为:方向盘角度、加速度

高层行为: 跟车、变道、避让, ...

状态 $s \in S$

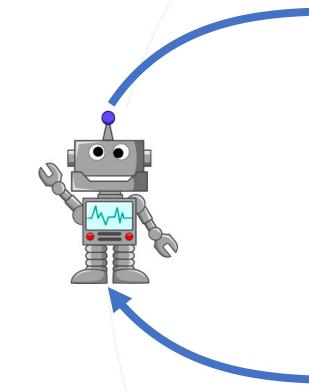
状态 s 表示自车与他 人/车的几何、运动学、

行为状态

马尔科夫决策过程(Markov Decision Process)

MDP 模型具有5个元素: $< S, A, T, R, \gamma >$

状态转移、奖励函数折扣因子



动作 $a \in A$

若当前世界处在状态 s, 自车执行动作 a, 世界下一步转移到状态 s' 的概率是多少?

状态 $s \in S$

$$T(s, a, s') = p(s' \mid s, a)$$

下一步状态 $s' \in S$

指定机器人任务的方式: 若机器人在世界状态 s 执行动作 a, 所获得的即时奖励 r 是多少? 奖励 r r = R(s, a)

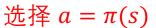
MDP 决策规划

定义: 利用 MDP 模型, 求解机器人的最优闭环策略

状态 $s \in S$ 世界的真实状态

策略 $\pi: S \to A$

为每个状态 s 指定一个动作 a



动作 $a \in A$

 $< S, A, T, R, \gamma >$

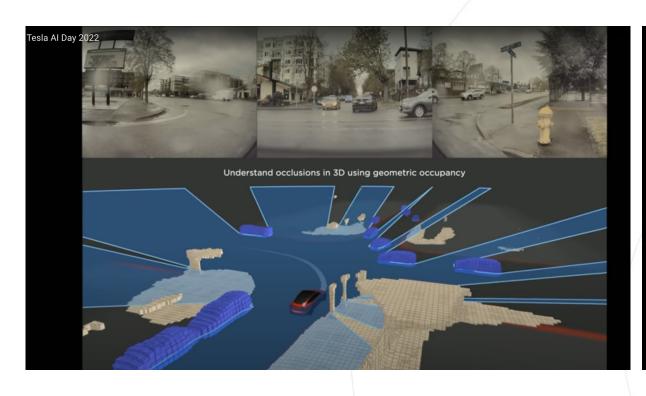
状态 $s \in S$ $T(s, a, s') = p(s' \mid s, a)$

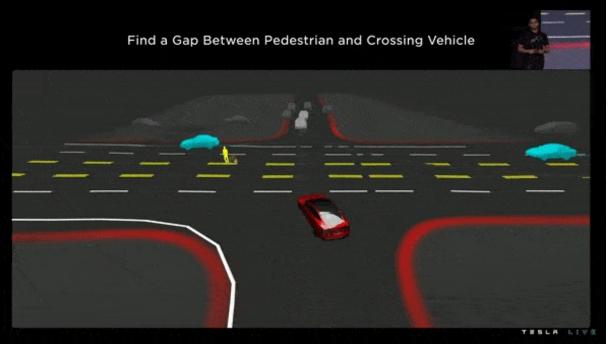
下一步状态 $s' \in S$

感知 s'

奖励 r r = R(s, a)

例: Tesla 的 MDP 模型 (2022)





例: Tesla 的 MDP 模型 (2022)

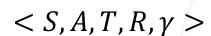
第一层: 局部车道图上的不同目标位置

第二层:是否对个体一进行避让第三层:是否对个体二进行避让

• • • •

状态 s:

自车与他人/车的几何与运动学状态



状态转移T:联合轨迹优化

给定当前状态、目标位置与交互方式,由神经网络生成所有参与者的初始轨迹,由最优化方法生成所有参与者的最终轨迹

奖励函数R: 轨迹打分

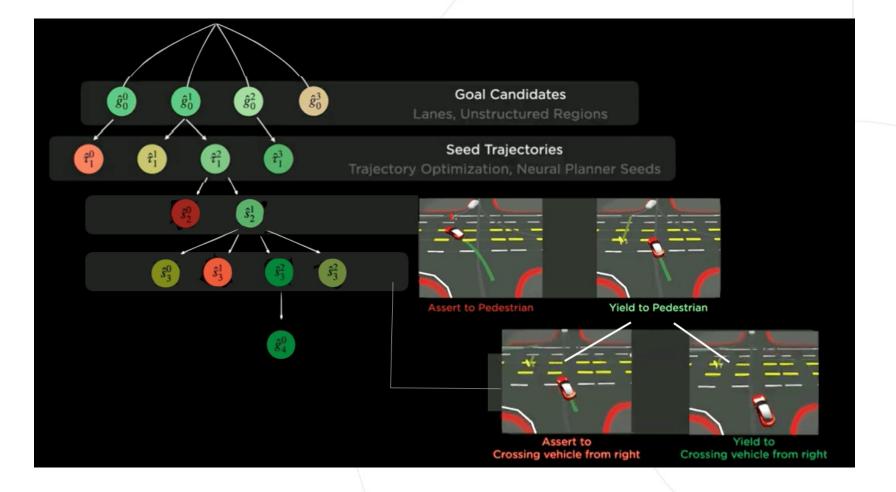
显式打分:碰撞检测、舒适度分析

学习打分:接管可能性、行为的类人程度

完美感知,直接获取世界状态 s

蒙特卡洛树搜索 (MCTS)

算法: 通过推演未来可能发生的情况, 从而计算自车的最优策略



例: Tesla 的 MDP 模型 (2022)

第一层:局部车道图上的不同目标位置

第二层:是否对个体一进行避让第三层:是否对个体二进行避让

. . .

② 对他人/车运动轨迹 进行了确定性假设

状态转移:对自车与他车的联合轨迹优化

给定当前状态、目标位置与交互决策,由 神经网络生成初始轨迹,由优化方法生成 最终轨迹

奖励函数: 轨迹打分

显式打分:碰撞检测、舒适度分析

深度学习打分:接管可能性、行为的类人

程度

① 认为可以准确知道他人的运动学状态

状态 s:

与运动学状态

自车与他人/车的几何

完美感知,直接获取世界状态 s

例: Tesla 的 MDP 模型 (2022)

第一层: 局部车道图上的不同目标位置

第二层:是否对个体一进行避让 第三层:是否对个体二进行避让

自车与他人/车的几何与运动学状态

① 认为可以准确知道他人的运动学状态

② 对他人/车运动轨迹 进行了确定性假设

状态转移: 对自车与他车的联合轨迹优化

给定当前状态、目标位置与交互决策,由 神经网络生成初始轨迹,由优化方法生成 最终轨迹

奖励函数: 轨迹打分

显式打分:碰撞检测、舒适度分析

深度学习打分:接管可能性、行为的类人

程度

完美感知,直接获取世界状态 s

感知的不确定性

例: Tesla 的 MDP 模型 (2022)

第一层: 局部车道图上的不同目标位置

第二层: 是否对个体一进行避让 第三层: 是否对个体二进行避让

状态 s:

自车与他人/车的几何与运动学状态

① 认为可以准确知道 他人的运动学状态

② 对他人/车运动轨 迹进行了确定性假设

状态转移:对自车与他车的联合轨迹优化

给定当前状态、目标位置与交互决策,由 神经网络生成初始轨迹,由优化方法生成 最终轨迹

奖励函数: 轨迹打分

显式打分:碰撞检测、舒适度分析

深度学习打分:接管可能性、行为的类人

程度

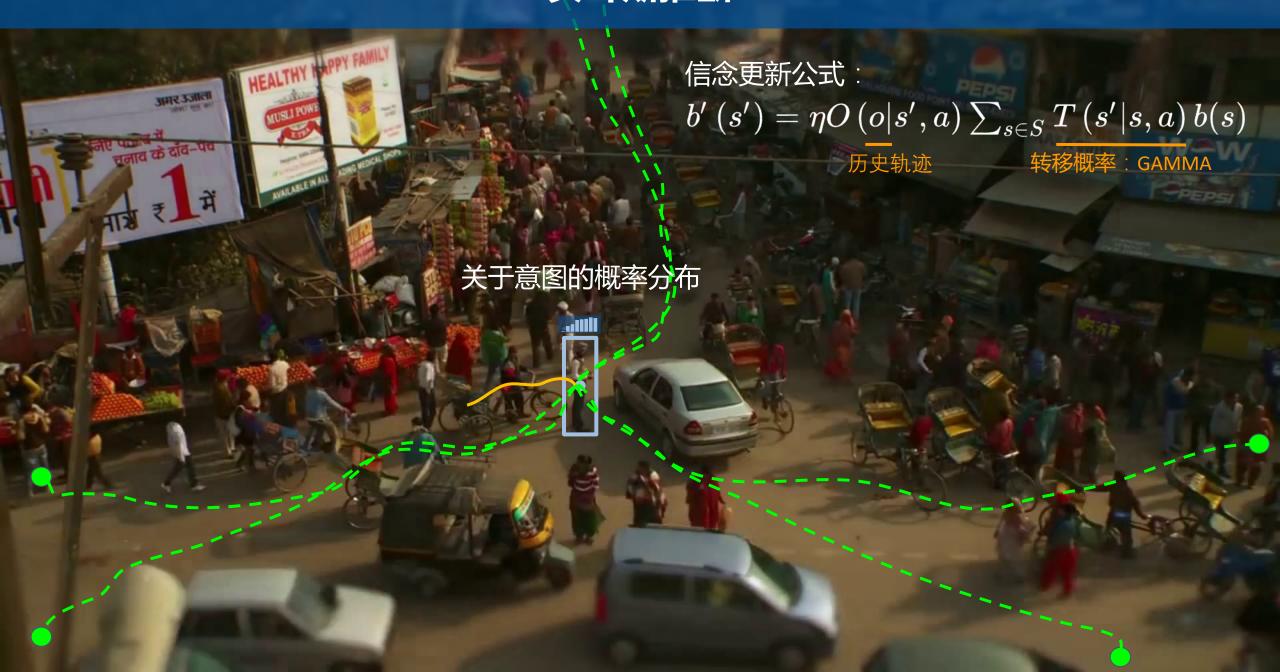
完美感知,直接获取世界状态 s

人类行为的不确定性

降低人类行为的不确定性?

人类意图的不确定性

贝叶斯推断 [RAL'18, RAL'22]



信念(Belief)

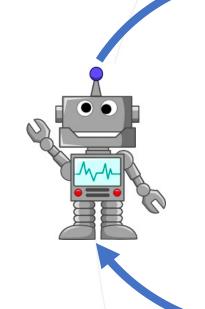
部分可观马尔科夫决策过程 (POMDP)

Partial observability: 真实世界的状态只能被间接地、部分地、有噪音地感知

部分可观马尔科夫决策过程 (POMDP)

POMDP 模型具有7个元素: $< S, A, Z, T, O, R, \gamma >$

状态、动作、观察空间



动作 $a \in A$

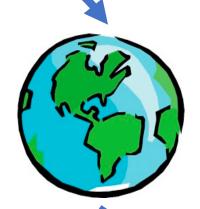
动作 a 表示自车的行为

底层行为:方向盘角度、加速度高层行为:跟车、变道、避让,...

图像数据、 点云数据、 几何与运动学信息,

• • •

观察 $z \in Z$

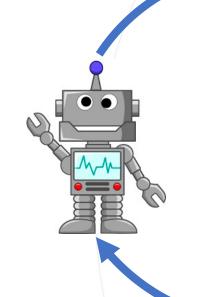


状态 $s \in S$

表示自车与他人/车的 几何、运动学与行为 状态

部分可观马尔科夫决策过程 (POMDP)

POMDP 模型具有7个元素: $< S, A, Z, T, O, R, \gamma >$ 状态转移、观察、奖励函数



动作 $a \in A$

对感知机制的建模:

若自车执行动作 a 使世界状态转移 到 s', 获得观察 z 的概率是多少?

$$O(z,a,s') = p(z|a,s')$$

观察 $z \in Z$

奖励 r r = R(s, a)

状态 $s \in S$

$$T(s, a, s') = p(s' \mid s, a)$$

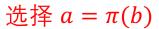
下一步状态
$$s' \in S$$

POMDP 决策规划

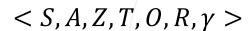
定义: 利用 POMDP 模型, 求解机器人的最优闭环策略

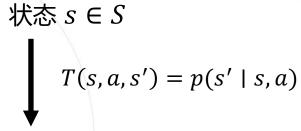
信念 $b \in \mathcal{B}$ 关于世界状态的概率分布

策略 π : $\mathcal{B} \to A$ 为每个信念 b 指定一个动作 a



动作 $a \in A$





下一步状态 $s' \in S$

$$O(z,a,s') = p(z|a,s')$$

观察 $z \in Z$

奖励
$$r$$
 $r = R(s, a)$

混乱路况自动驾驶POMDP模型 [RSS'19, ICRA'20, CoRL' 22, T-RO'22]

Belief bDistribution over states

Transition function T

Observation function *O*Gaussian noise

Action a

Observation z

State *s*

Pos, vel, headings,

human behavioral states

Safety, efficiency, smoothness

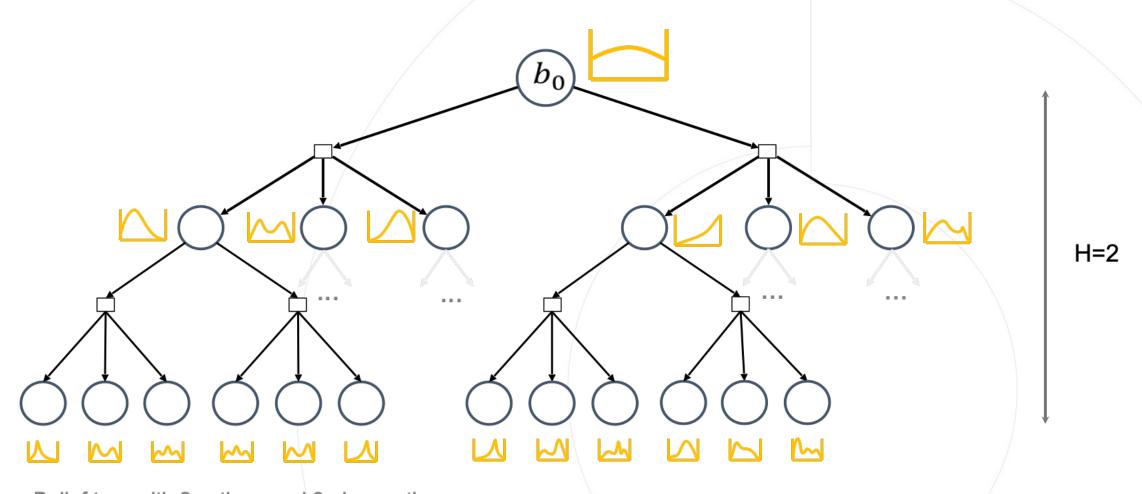
自动驾驶决策规划

Step 1: 分析问题结构

Step 2: 设计规划算法

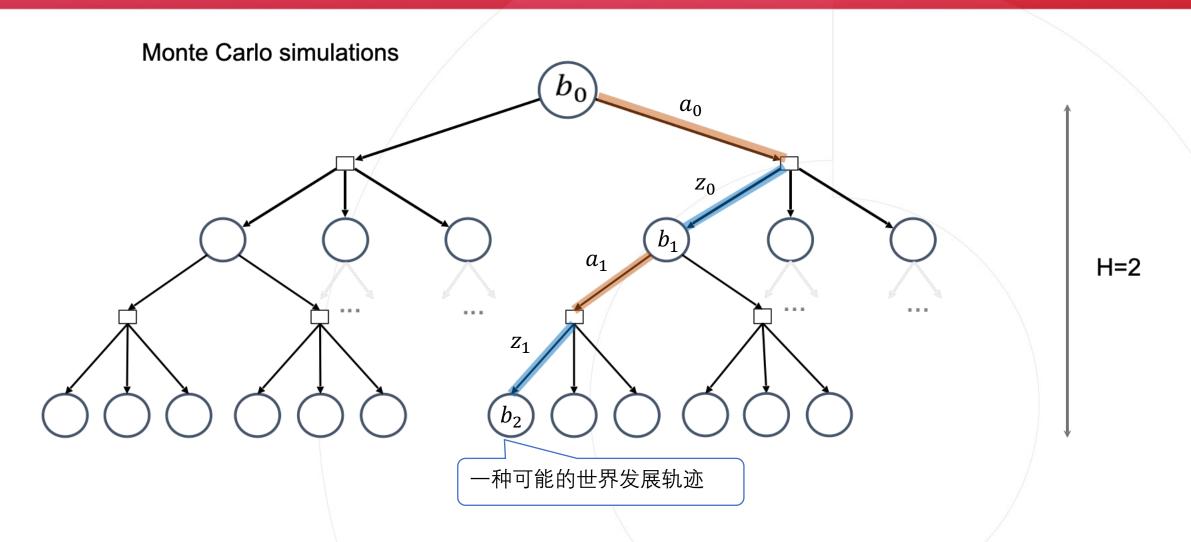
Step 3: 实用算法优化

信念树(Belief Tree)

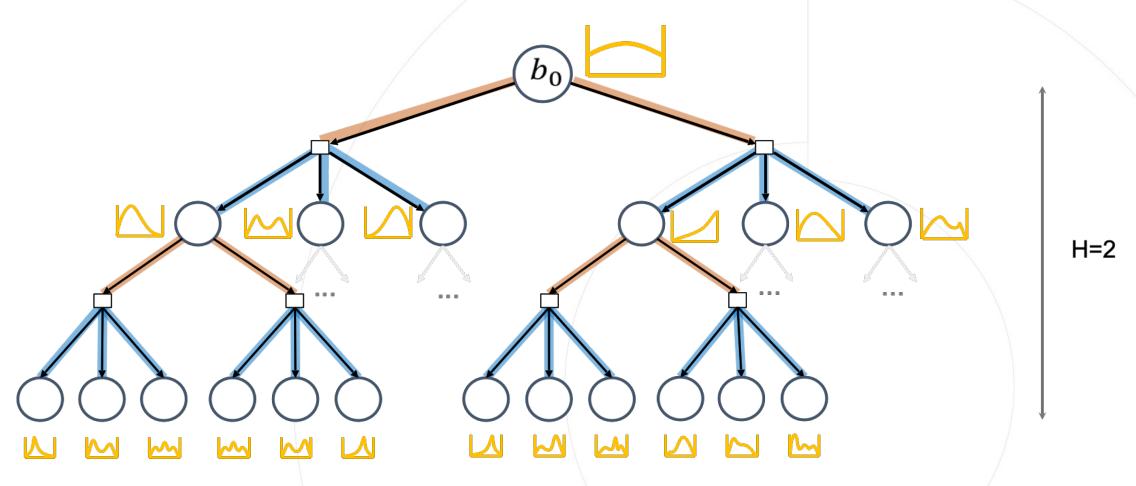


Belief tree with 2 actions and 3 observations

信念树(Belief Tree)

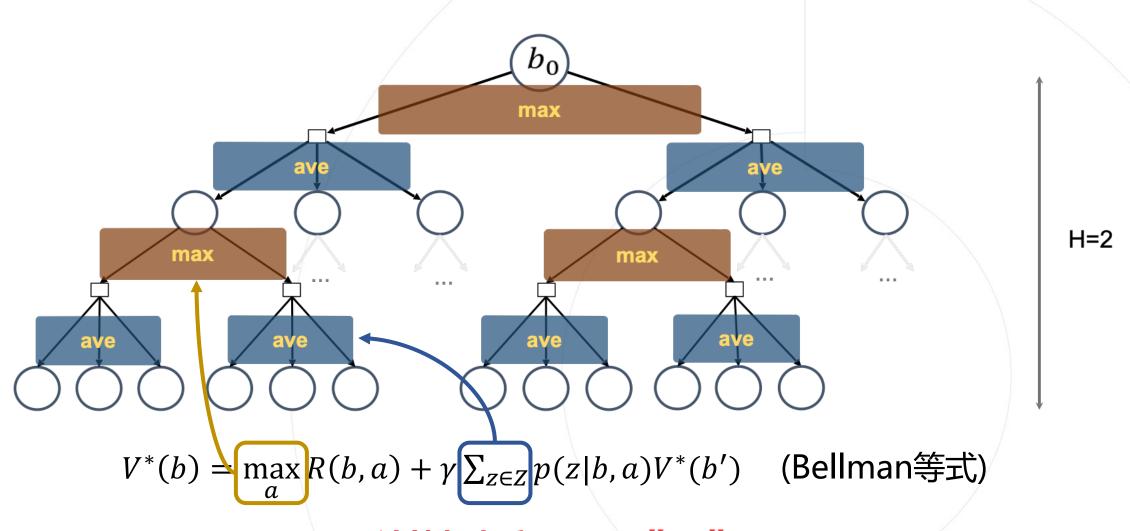


信念树(Belief Tree)



Belief tree with 2 actions and 3 observations

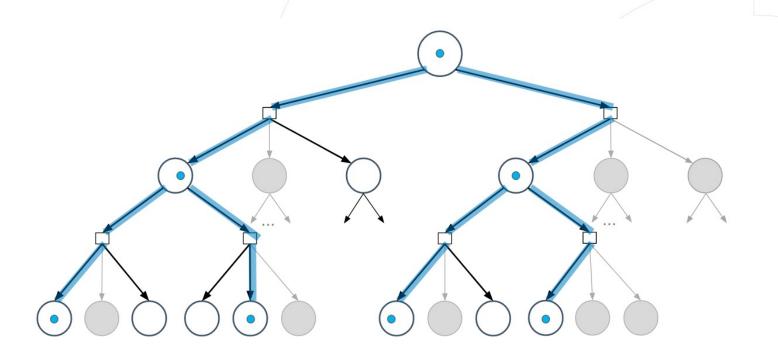
信念树搜索(Belief Tree Search)



计算复杂度: $O(|A|^H|Z|^H)$

DESPOT 算法

- 只考虑有限个情形 (scenario) ,构造稀疏信念树 (sparse belief tree) , 进行近似最优的决策
 - Scenario: 使用固定的 random seed $\{\varphi_0, \varphi_1, \varphi_2, \varphi_3, \varphi_4, ...\}$ 进行蒙特卡洛模拟



复杂度: $O(|A|^H)$

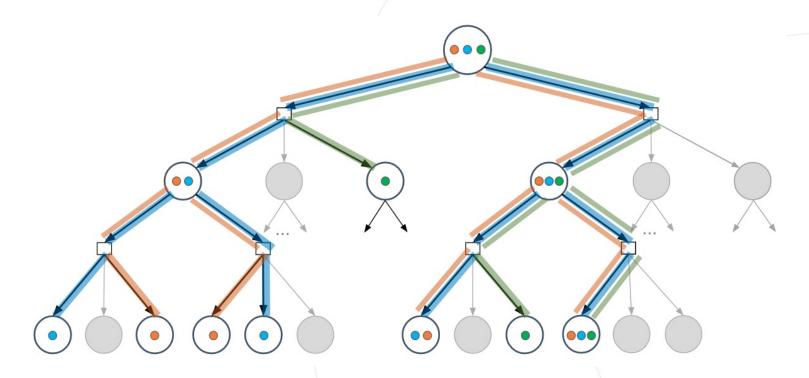
DESPOT 算法

• 只考虑有限个情形(scenario),构造稀疏信念树(sparse belief tree), 进行近似最优的决策



DESPOT 算法

• 只考虑有限个情形(scenario),构造稀疏信念树(sparse belief tree), 进行近似最优的决策

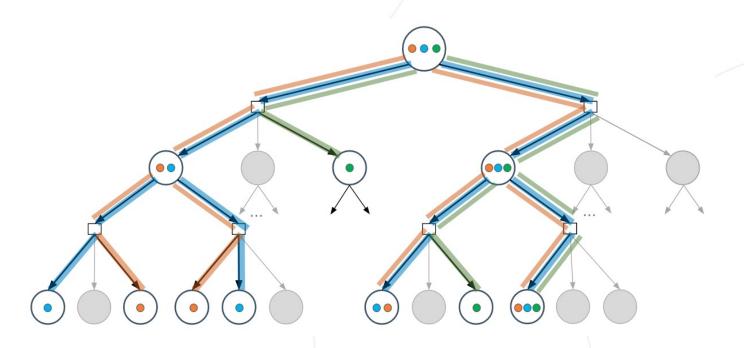


DEterminized Sparse Partially Observable Tree

复杂度: $O(|A|^H K)$

自动驾驶 POMDP 规划

DESPOT^[1]: $O(|A|^{H}|Z|^{H}) -> O(|A|^{H}K)$



|A| = 9, H = 20, K = 100 DESPOT树大小: O(100*9²⁰)

自动驾驶决策规划

Step 1: 分析问题结构

Step 2: 设计规划算法

Step 3: 实用算法优化

混合并行DESPOT (HyP-DESPOT)

[RSS'18, IJRR'20]

DESPOT 计算复杂度 $O(|A|^H K)$

任务拆解与重整合

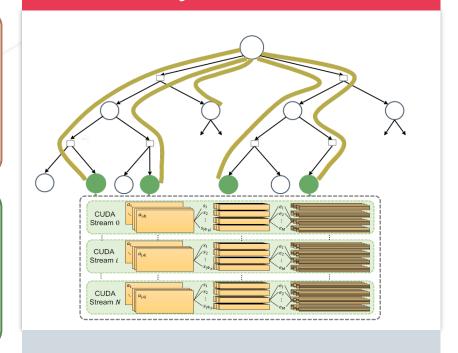
CPU并行 信念树搜索

- 灵活的数据结构
- 频繁的数据共享

GPU并行 蒙特卡洛 Rollout

- 独立的未来情形
- 相似的运算逻辑

HyP-DESPOT



400+倍计算加速

自动驾驶 POMDP 规划

[RSS'18, IJRR'20]

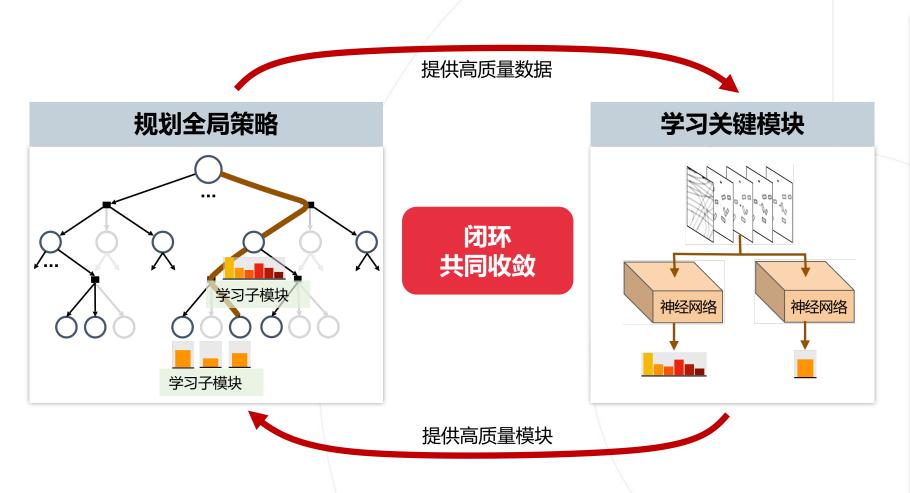
问题解决?

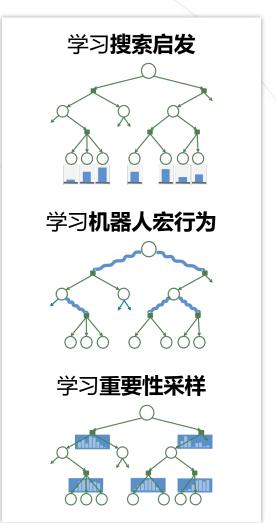
- 指数复杂度 O(|A|HK) / N:
 - → 只适用于少量动作、短期规划
- 采样不足:
 - → K 个情形对未来可能性的覆盖密度随着 H 指数级下降
- 模型误差累积:
 - → 随着时域 H 的增长, 预测变得越来越不准确

问题关键

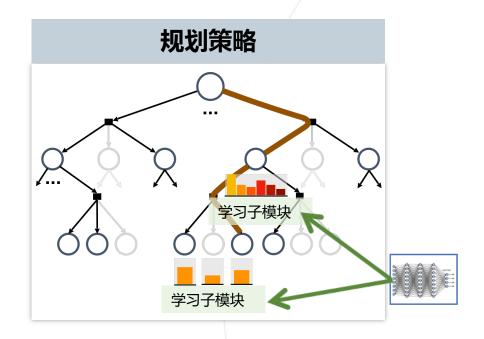
- 指数复杂度 O(|A|HK) / N:
 - → 只适用于少量动作、短期规划
- 采样不足:
 - → K 个情形对未来可能性的覆盖密度随着 H 指数级下降
- 模型误差累积:
 - → 随着时域 H 的增长, 预测变得越来越不准确

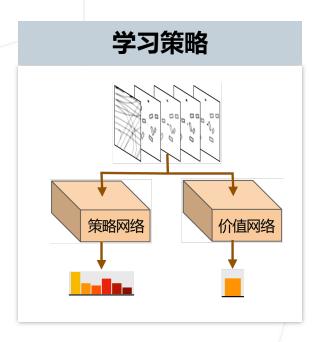
长期规划,但避免深度搜索?





[RSS'19, T-RO'22]

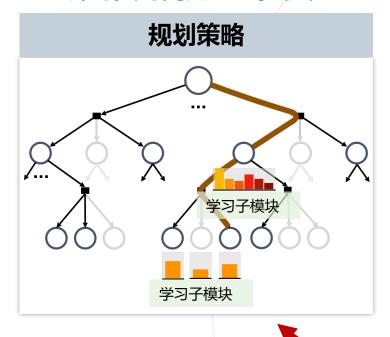




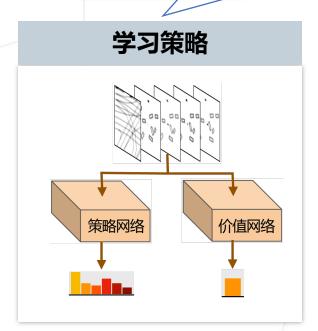
[RSS'19, T-RO'22]



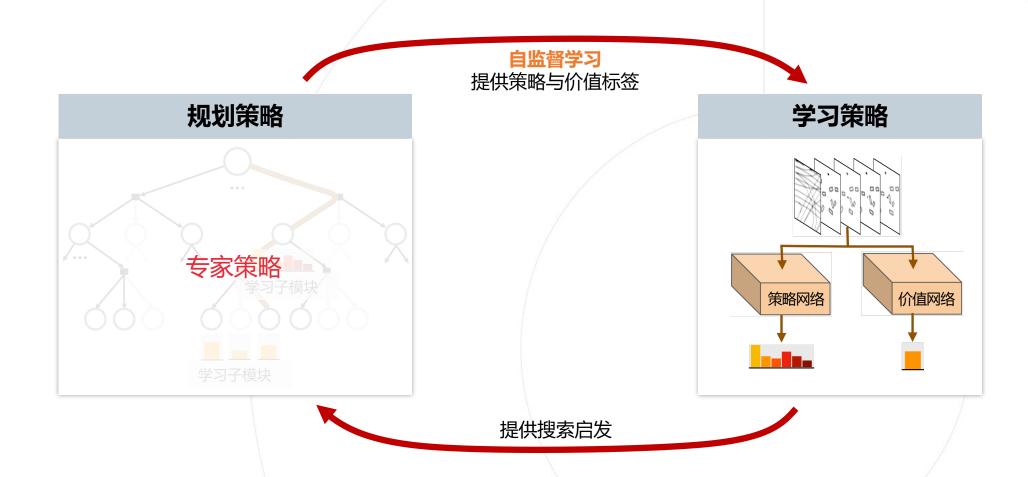
针对实时问题进一步优化!

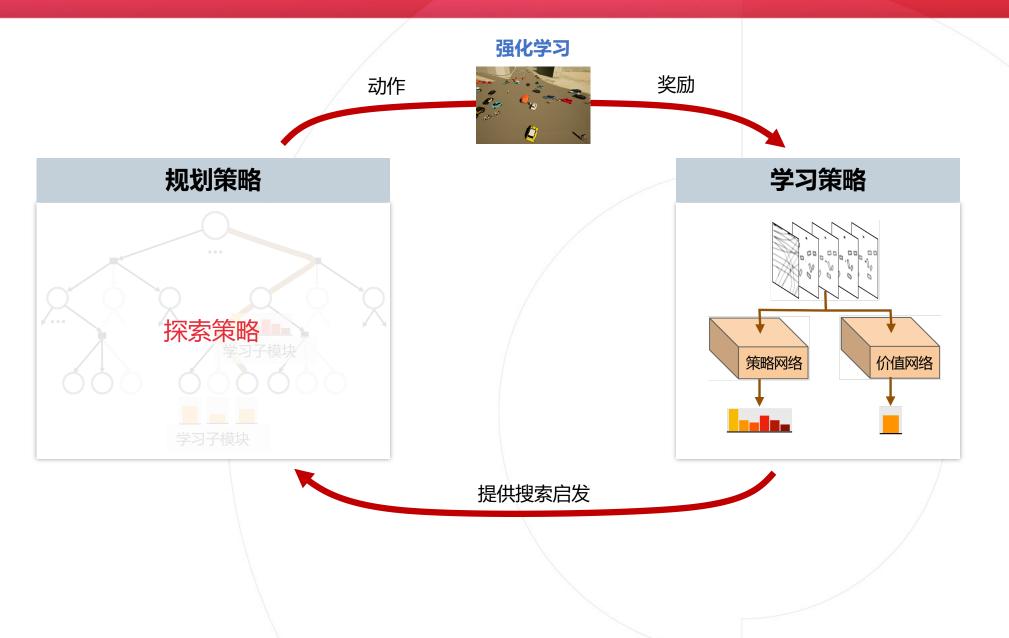


训练数据?



提供搜索启发

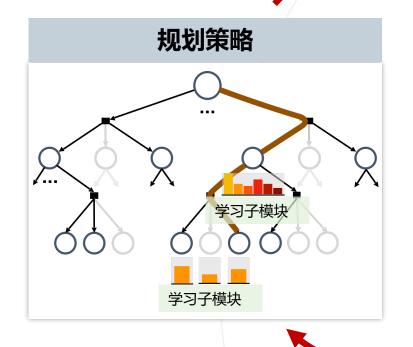




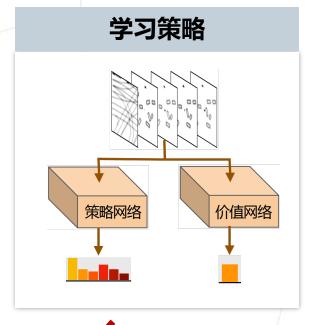
高效训练

训练时间减少约90%

提供自监督学习/强化学习数据



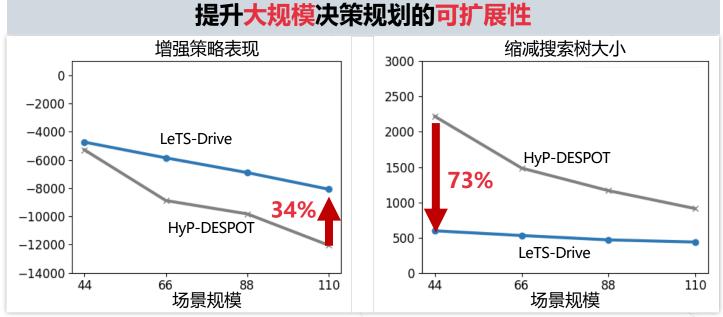
闭环 共同收敛



提供搜索启发

解决指数复杂度

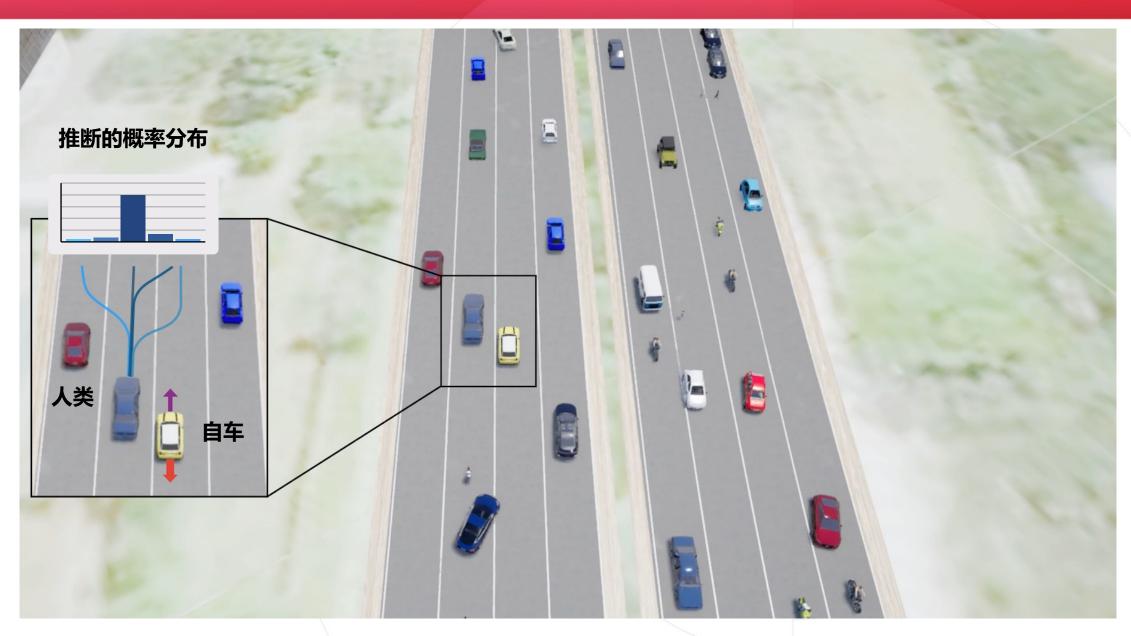
 $O(|A|^{H}|Z|^{H}) \rightarrow O(|A|^{D}|Z|^{D})$ $D \ll H$



更进一步

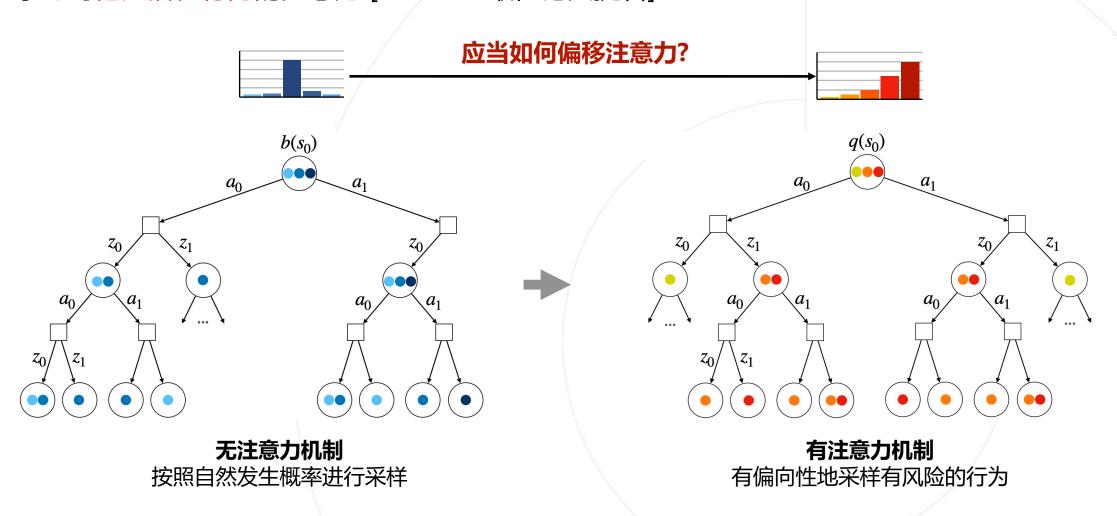
在同等深度的搜索中,如何进一步提升实时决策能力?将搜索变得更窄!

如何集中搜索方向?



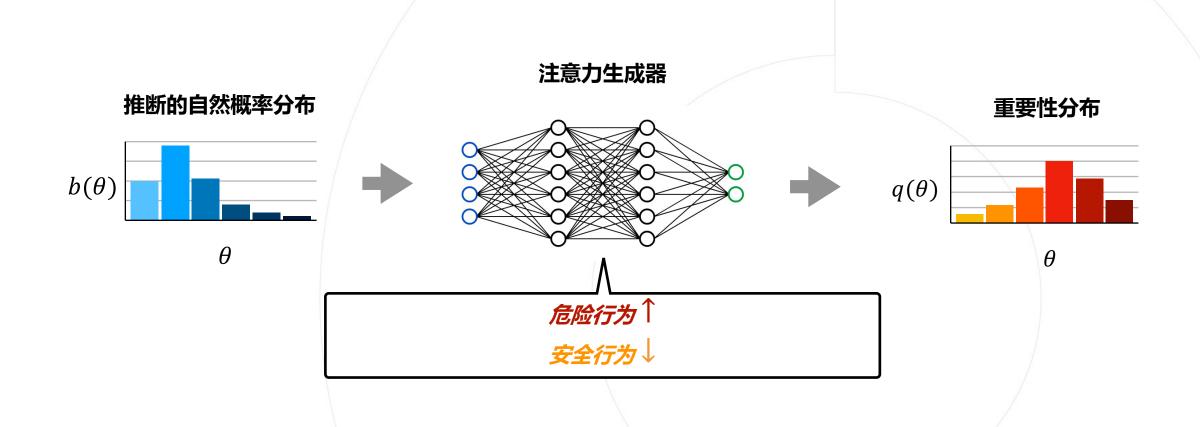
LEADER: Learning Attention over Driving Behaviors

• 学习对他人潜在行为的注意力 [CoRL'22 最佳论文提名]

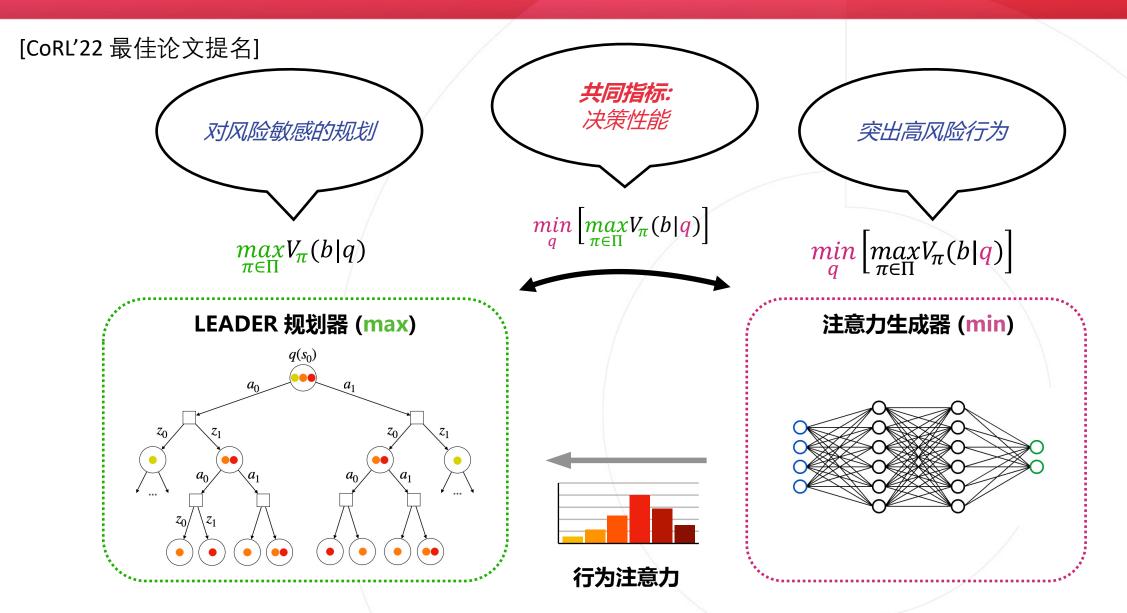


LEADER: 从数据中学习行为注意力

[CoRL'22 最佳论文提名]



LEADER: 规划模块与学习模块的最大-最小博弈



总结:自动驾驶决策规划

Step 1: 分析问题结构

世界是一个巨大的 POMDP!

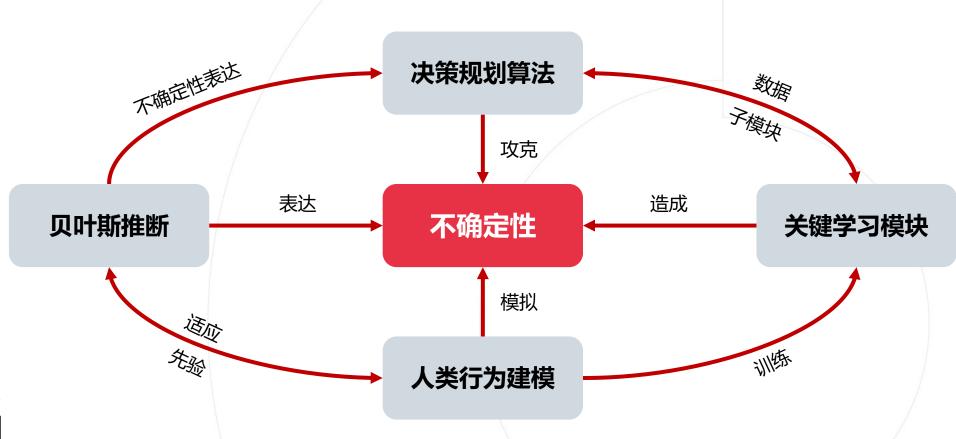
决策规划、强化学习

Step 2: 设计规划算法

信念树搜索 + 蒙特卡洛采样 + 启发式搜索

Step 3: 实用算法优化

并行化 + 融合规划与学习



英文主页

中文主页

