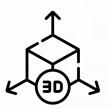
技术趋势分析



《端到端具身智能体》2025 八大技术趋势

世界模拟引擎

生成/重建/闭环反馈

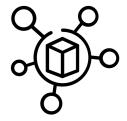
空间智能

空间感知/推理想象

群体智能

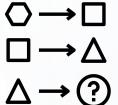
多智能体 / 车路云协同

安全与风险


可解释性 / 价值对齐

当下趋势

端到端、多模态、具身智能体大模型



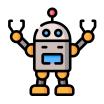
涌现能力

海量数据 / 统一表征

因果推理

长时记忆 / 层级规划

闭环反馈


增量学习/终身学习

双系统

低功耗 / 低时延

Towards Intelligent, Reliable and Generalizable Autonomy

Data-centric Pipeline

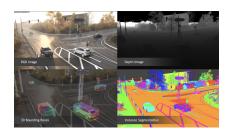
Data Collection

YouTube

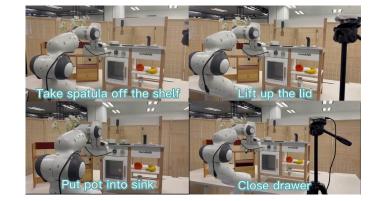
Foundation Model

Pre-training DriveCore

Applications

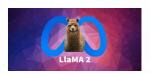

Autonomous Driving

Embodied AI



How to formulate? What's the objective goal? **GenAD** (our on-going project)

Data Generation



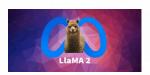
Foundation Models

NLP (LLM)

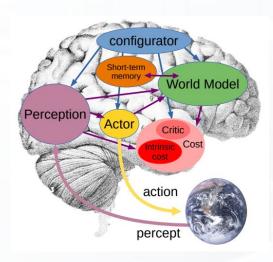

AD System

- Language Interpreter
- Driving Knowledge
- Any more?

General CV



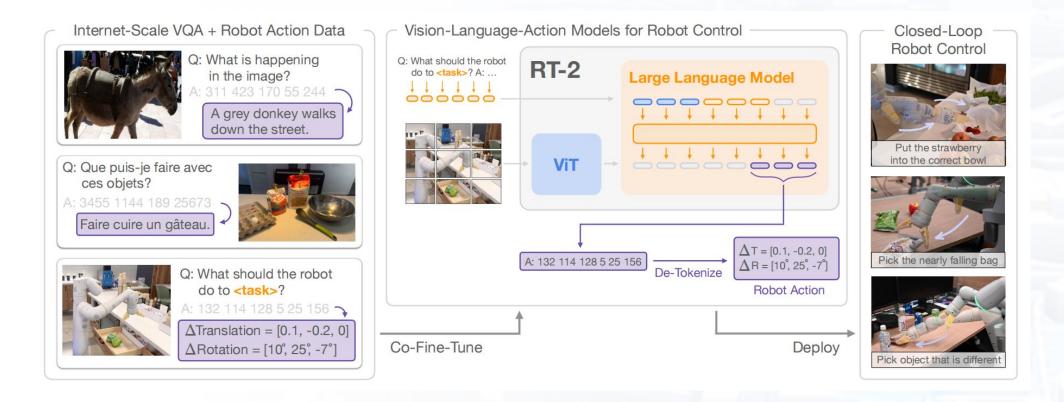
- Vision Abstractor
- Auto-labeling
- Any more?


Foundation Models (cont'd)

NLP (LLM)

AD System

General CV



- Multimodality
- Intelligence
- Generalization

Insight from Robotics / Embodied AI

- How vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control
- Goal: to boost generalization and enable emergent semantic reasoning

- Robotic tasks naturally fits into language at dissecting tasks step by step using language (prompt).
- Is it the <u>right way</u> to open the language tool box as does in Robotics for Autonomous Driving?

Analogy to General Domains in CV/NLP/Robotics

General
Large
Models

Domain	Method Abbreviation	Institute / Time	Data Scale	Public?
NLP (LLM)	GPT-4	OpenAl / 2023.3	13T tokens	×
	LLaMA 2	Meta / 2023.7	2T tokens	V
Vision	ViT-22B		4B images	×
Vision Language (LLM backend)	BLIP-2	Salesforce / 2023.1	129M images-text pairs	V
	DriveAGI (GenAD)	OpenDriveLab / 2023.11	2000 h videos (public)	V
Autonomous	GAIA-1	W ayve / 2023.6	4700 h videos	×
nuScenes: 4.5h	World Model Demo		Unknown (Large-scale)	×
Robotics (LLM backend)		Google / 2023.3	Unknown (Large-scale)	×
	RT-2	DeepMind / 2023.7	1B img-text pairs / 13 robots / 17 months	X

Industrial Large Models (Application)

If taken seriously for AD: lots of compute (at least 200 A100s) + massive amount of data (at least 10k hours of diverse, high-quality data)

Trending: Recent Work on World Model

From simulated agents to real-world driving systems

Trending: Recent Work on World Model

From simulated agents to real-world driving systems **Position Paper** (by LeCun) Positioning the developments of world models

RL Agents

18.3

20.3 Dreamer V1/2/3:

Towards general agents with


Vision

22.6

23.6

I-JEPA:

Capturing visual knowledge in self-supervised manner

scalable world models

Driving

23.6

Scaling up world models on large corpus of realistic driving videos

General World Model: inhouse data collected around the globe

GAIA-1: 4700 hours of driving videos collected in London

Personal Take on Foundation Models into Autonomous Driving

End-to-end Auto Driving

Pros:

- 1. Scalability
- 2. Global optimization
- 3. Easy-to-embed Infra

For:

- → Generalization/Robustness
- → Performance
- → Feasibility for deployment

Personal Take on Foundation Models into Autonomous Driving

Research

SOpenAI

Video generation models as world simulators

Mind-blowing Part

End-to-end Auto Driving

Pros:

- 1. Scalability
- 2. Global optimization
- 3. Easy-to-embed Infra

For:

- → Generalization/Robustness
- → Performance
- → Feasibility for deployment

Weakness Samples

Some rumors:

- 0.8M GPUs
- 50B video clips from Microsoft (ref: Youtube has 13B videos)
- This a side project from OpenAI

Personal Take on Foundation Models into Autonomous Driving

SOpenAI

Video generation models as world simulators

Mind-blowing Part

Towards Intelligent, Reliable and Generalizable System

Data-driven

Alg-driven

Metric-driven

- Scaling data in all levels with self-supervised learning
- → Interaction between Simulating the physical world agents and env/physical world
- Rule of thumbs from foundation models
- Guarantee reliability and safety.

→ Pixel-level *not* suffice Authentic evaluation metric. Actions require latent abstractions. Depends on task.

Weakness Samples

→ Performance

→ Feasibility for deployment

→ Generalization/Robustness

Global optimization

Easy-to-embed Infra

End-to-end

Auto Driving

Scalability

Pros:

For:

Some rumors:

- 0.8M GPUs
- 50B video clips from Microsoft (ref: Youtube has 13B videos)
- This a side project from OpenAl

赛事总结

国际自动驾驶挑战赛丨赛事背景

^{赛道} 具身多模态 三维视觉定位

_{赛道} 占据栅格与 运动估计

多模态识别 检测、占据栅格、地图

赛道 **无图驾驶** 全场景道路结构认知 _{赛道} 大语言模型 +自动驾驶

端到端 多模态大模型 图像、点云、语言

双赛道 **端到端自动驾驶** 大规模开环/ CARLA仿真闭环

具身智能体

环境交互、闭环反馈 自我迭代

赛道 世界模型 _{预测世界几何变化}

SuperAlignment Q* System2: 复杂推理

AGI

AGI之路

2020 - 2022

早期阶段:感知、识别

各模态简单融合

2023 - 2025 端到端、多模态、大一统 具身、空间智能 2025 -主动探索物理世界

可交互、可反馈、可持续

