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World Model

A Path Towards Autonomous Machine Intelligence, Yann Lecun

Task / Objective:

* Represent the world & Learn to predict and re-act
*  Simulate the world without REAL interaction with the world.

What happens if | go straight?
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World Model

A Path Towards Autonomous Machine Intelligence, Yann Lecun

Motivation (Why study world model):
* Simulate the world: learn new skills with very few trials
* Human and non-human animals model the world, infer and act
in imagination, then make final decision.
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Common
Scenes

»
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Observation Human Driver Drive Safely
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World Model

A Path Towards Autonomous Machine Intelligence, Yann Lecun

Motivation (Why study world model):

* Enable agent: intelligent agents can perceive the world.
« Theagent can predict what happens if taking some actions.

Action & Reward
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World Model

Big Picture of World Model

Intelligent Agent:
* Perception Model: estimate state from observation + L"’I
* Action Model: propose actions given current state. Aﬁe”
*  World Model: predict future states given actions and 1 .

states. Memory Q'/: @ Worid model%
f} il

* Reward: compute "penalty" (GOAL: minimize 7
penalty), from estimated future states.

«  Memory: keep track of states and rewards. VL7 ‘j‘?’.,

e

World Models for Autonomous Driving: An Initial Survey
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World Model

A Comprehensive Survey on General World Models and Beyond

Roadmap to Autonomous Driving World Model:

=

Position Paper (by LeCun) -
simulate the world, rehearse in the mind.

World Models - model RL
environments.

(©) DMLab

(@ Control Suite

() Auri

(@) Minecraft

Dreamer Series- towards general
agents and scalable world models.

%

universal video generation.

'
22.6 23.2

RL Agents |
18.3 20.3

From simulated agents to
real world driving systems

UniPi/UniSim - action/goal controlled

GAIA-1 - action controlled realistic
driving video generation.

Tesla General World Model - end
to end world model for driving.

8

o

DriveDreamer - world model derived
from real-world driving scenarios.

Drive-WM - the first driving world model
compatible in E2E planning.

— -

Vista - high-fidelity, versatile, and
generalizable driving world model.

wa| Wy Wy 0, B

<t W @ Ry A

ViDAR - predicting future point clouds
from historical visual input.

GenAD - 2000 hours of driving videos
and a generative driving model.

'
23.6 23.9

23.11

24.3 24.5
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World Model

A Comprehensive Survey on General World Models and Beyond

Roadmap to Autonomous Driving World Model:

World Models - model RL
environments.

RL Agents
18.3

Dreamer Series- towards general
agents and scalable world models.

20.3

World models initially emerged in the field of
reinforcement learning (RL) to model the
environment, allowing an agent to evaluate
actions without taking real actions, and thereby
make the best decisions.
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World Model

A Comprehensive Survey on General World Models and Beyond

Roadmap to Autonomous Driving World Model:

- N
by, S
=3y

Position Paper (by LeCun) - In 2022, LeCun published a position paper
simulate the world, rehearse in the mind. proposing a pathway to achieving
autonomous machine intelligence, where the
world model is the most critical component.

o] Sl B This paper presented an ideal vision of
UniPi/UniSim - action/goal controlled future artificial intelligence.

universal video generation.

'
22.6 23.2
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World Model

A Comprehensive Survey on General World Models and Beyond

Roadmap to Autonomous Driving World Model:

Subsequently, world models have
flourished in areas such as video
generation, autonomous driving,
and autonomous agents.

GAIA-1 - action controlled realistic
driving video generation.

Tesla General World Model - end

to end world model for driving.

o

DriveDreamer - world model derived
from real-world driving scenarios.

Drive-WM - the first driving world mode
compatible in E2E planning.

— 0 =

Vista - high-fidelity, versatile, and
generalizable driving world model.

ViDAR - predicting future point clouds
from historical visual input.

GenAD - 2000 hours of driving videos
and a generative driving model.

| >

23.6

23.9

23.11

24.3 24.5
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World Model

A Comprehensive Survey on General World Models and Beyond

Roadmap to Autonomous Driving World Model:

Subsequently, world models have
flourished in areas such as video
generation, autonomous driving,
and autonomous agents.

GAIA-1 - action controlled realistic
driving video generation.

Tesla General World Model - end

to end world model for driving.

o

DriveDreamer - world model derived
from real-world driving scenarios.

Drive-WM - the first driving world mode
compatible in E2E planning.

— 0 =

Vista - high-fidelity, versatile, and
generalizable driving world model.

ViDAR - predicting future point clouds
from historical visual input.

GenAD - 2000 hours of driving videos
and a generative driving model.

| >

23.6

23.9

23.11

24.3 24.5
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World Model

Big Picture of World Model

How to achieve world model:
* From the most general perspective, World Model =|Generation f{Control e

/ \aut:)nomous driving

*  GAN-based + Texts
* Diffusion-based * Destinations & Trajectories
* Autoregressive modeling-based » Ego-vehicle actions

* Masked modeling-based
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Controllable Video Generation for World Model

Generation Models

A function to map samples to a distribution.
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Controllable Video Generation for World Model

Generation Models

Sample unseen images from the distribution.

OpenﬂriveLab



Controllable Video Generation for World Model

How to represent probability distribution of natural images?

Generative Models can be grouped into:
 Likelihood-based models
* Directly learn the distribution function via maximum likelihood.

O000O0
T o 0CO0O0O0O0 Data space X Latent space Z
P OO @00
@ B g o¥e) O
5 : 5
|/ X T X : f % i SgR
| / 8 = I ; 5‘ | - s
N R O ®|Q, 0 O W
Y| BT HE okl
o) X JNoNe)
— 00000
Bayesian networks MRF Autoregressive Flow models
(e.g., VAEs) models
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Controllable Video Generation for World Model

How to represent probability distribution of natural images?

Generative Models can be grouped into:
* Implicit generation model
« thedistribution is implicitly represented by a model. (GAN)

Random Noise
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Controllable Video Generation for World Model

How to represent probability distribution of natural images?

Generative Models can be grouped into:
 Diffusion model (Score-based model)

* Model the gradient of the log 4\;\» l’l A :
probability density function, instead of t t i i l”::: : : / ‘ ) ‘ ‘
distribution itself. i N NN N R s

AIONAATAL T X
L i AN ANV A e T e 55
IR NSNS = == =
L N OO et o)
\ A= ==
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Generative Adversarial Network (GAN)

Architecture

Two models, competing with each other and making other stronger.
* Generator

* Outputs synthetic samples given a noise variable input
e Discriminator

» Acriticto tell the fake samples from the real ones

Generator

G(z)

GAN: Adversarial / X
training

OpenﬂriveLab



Generative Adversarial Network (GAN)

Architecture
Discriminator (D):

 Real samples: maximize the probability E;p,()/log D(z)]
« Fake samples: output a probability close to zero, by maximizing
IE‘:zrvpz(z:) [lOg(l — D(G(Z)))]

Generator (G):

* Increase the chances of producing a high probability for a fake example,
thus to minimize E.p,(;)[log(1 — D(G(2)))]

Open.ﬂriveLab



Generative Adversarial Network (GAN)

Convergence Issue

Hard to achieve Nash Equilibrium because generator and discriminator
update themselves independently.

* Nash Equilibrium: a situation where no player could gain by changing their
own strategy.

WIES
NICRIEFERS
B AEfH
miE | SFIR2E FHIBIREIN, ZFIRI0%F
NICH .‘

R | PHRIOF, ZIEVER SHFIEE
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Generative Adversarial Network (GAN)

Convergence Issue

Gradient vanishing when two distributions  Giredlent ofthe genersior wii he crighnal coet_
have no overlap: E EE igpgh: ‘
« If the discriminator behaves badly, the '

generator does not have accurate feedback

and the loss function cannot represent the ’ l‘
reality. mmmmw

e Ifthediscriminator does a great job, the
gradient of the loss function drops down to -
close to zero and the learning becomes super
slow or even jammed.

|[VeL(D. gs)||

10-7

10-%
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Generative Adversarial Network (GAN)

Improve GAN training

Stablize the training stage:

« Historical Averaging: penalizes the training speed when is changing too
dramatically in time.

« Adding Noises: create higher chances for two probability distributions to
have overlaps.

* Virtual Batch Normalization: each data sample is normalized based on a
fixed batch (“reference batch”) of data rather than within its minibatch

* Minibatch Discrimination: add more data points into GAN loss.

« Wasserstein distance: to solve the situation where two distributions (real /
fake) have no overlap.

Open.ﬂriveLab




Diffusion Model (Score-based Model)

Explicit distribution modeling

A markov process to slowly add noise to data and then learn the inverse.
* Explicitly model the data distribution via probability density function.

Diffusion models: X0
Gradually add Gaussian - - - - —— R st i
noise and then reverse

OpenﬂriveLab




Diffusion Model (Score-based Model)

Explicit distribution modeling

Probability Density Function (PDF) o
. . . QL Q3
 Arelative likelihood that the value of the Q115 X108 Q3 +15 x 108
random variable.
b —2.6980 —0.67450 0.67450 2.6980
Prja < X <b| = / fx(z)de. //\\
a

15.87%  68.27%  15.87%
-40 30 -20 -lo 00 1lo 20 30 4o

OpenﬂriveLab




Diffusion Model (Score-based Model)

How to model PDF in score-based model

Suppose X represents data samples; p (X) represents the underlying
data distribution:
* First designthe PDF as e—fo(x)
po(x) = —
0

A similar form to gaussian distribution, where Zy is a normalization form,
to ensure the integrationto be 1. 6 is the learnable parameter.

Open.ﬂriveLab




Diffusion Model (Score-based Model)

How to train a generation model

A simple solution is to Maximize the PDF for each sample:

N
1 i
mgx; og po(x;)
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Diffusion Model (Score-based Model)

How to train a generation model

A simple solution is to Maximize the PDF for each sample:

N

max ; log po(x:;)
N\ e_f(?(x)
@ Undesired po(x) = Zs

Need to deal with Zs, which typically is intractable given we don’t know f¢

OpenﬂriveLab




Diffusion Model (Score-based Model)

How to train a generation model

Alternative approach: optimize the gradients of P¢
 We define afunction $¢, as the gradient of Ps:

Se(x) = Vx 10gp0(x) - _vxfﬂ(x) — Vx log Zg = —fog(x)
=0

« By doing so, we are still training the fo¢, but avoid the intractable Zy !

The function 28 is called the score function, and a model for the score
function is called score-based model.

OpenﬂriveLab




Diffusion Model (Score-based Model)

How to train a generation model

Then, we can train the score-based model by minimizing the
discrepancy between real data distribution and the model:

Epx)[||Vx log p(x) — so(x)||]
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Diffusion Model (Score-based Model)

How to train a generation model

Then, we can train the score-based model by minimizing the
discrepancy between real data distribution and the model:

o) || Vx Jog p(x)|— so(x) 3]

How to track the ground-truth data score? Score matching

OpenﬂriveLab




Diffusion Model (Score-based Model)

Score Matching

Where the add-noise / de-noise procedure stands out.

* Since hard to estimate p (X) how about using conditional probability
for estimation?

9. (%) £ / 9o (Z|Z)Pdata(z)dz

Add small noise to the original data distribution, and ensure g, (Z) to be
similar to Pgata ()
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Diffusion Model (Score-based Model)

Score Matching

Then we can transfer the original loss function W\ A .
f . 2_ qa(m) — qd(mlm)pdata(m)dm
rom: ]Ep(x) [ |VX logp (X) — S¢ (w)||2_
. - _ 9 P.Vincent. A connection between score matching
to: Eq @ |||Vzloggs (X) — so(x)] 2}

and denoising autoencoders. Neural computation
3
so (x)]|3

B, %1 0)paax) [IIV:z- logg, (X |x) —
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Diffusion Model (Score-based Model)

Score Matching
Then we can transfer the original loss function 00(%)
= o

from: g, |||V logp (x) — so(2)I3

|I>

[ a@eIpana(o)ic

2i| P.Vincent. A connection between score matching

to: ]qu(fi) ||V5'{ lOg ds (i) — 8¢ (X)| 9 jamﬂiendsingautoencoders.Neuralcomputation
1V5 log g, (% %) — 56 (x)13

EQU (5i | X)pdata(x) 2

That’s why diffusion model use
Gaussian Noise as supervision
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Diffusion Model (Score-based Model)

Langevin dynamics

Draw samples from score-based models:
Xi+1 < X; + €V logp(x) + V2€¢ Z;,

ot o Vs

-.‘-\-x-‘.l-/
i
¥

\
Xk

b

R e S
.

D
gt

-
o~
b -
A

o)
:
]
%
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Diffusion Model (Score-based Model)

How to scale up diffusion model?

Latent Diffusion Model (CVPR 2021): ~
e e . . 8., 30 | Semantic Compression |
» Key Insight: Diffusion learning can be roughly divided @ v —
into two stages: 5 60 I Latent Diffusion Model (LDM)
* Perceptual compression stage which removes g 40 _
high-frequency details but still learns little £ [ Perceptual Compression
. . 2 20 — Autoencoder+GAN |
semantic variation. A
* Semantic compression stage learns the semantic 0 S B
and conceptual composition of the data. 0 L -5
o Key ldea: find a perceptually equivalent, but Rate (bits/dim)

computationally more suitable space E ﬂ
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Diffusion Model (Score-based Model)

How to scale up diffusion model?

Latent Diffusion Model (CVPR 2021):

o D\ 4 Latent Space B Conditioning)
a --I . Diffusion Process ————> Eemantiq
: Ma

Z Denoising U-Net €g Z,T i
' Repres |
entations
v maages
ko ] =
o

Pixel Space

bq e -

denoising step crossattention  switch  skip connection concat ~—— /
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Diffusion Model (Score-based Model)

How to scale up diffusion model?

=T =~

Prompt: A kangaroo Prompt: An entire Prompt: A Prompt: This Prompt: A car made Prompt: Heat death

holding a beer, universe inside a cheeseburger with dreamlike digital art out of vegetables. of the universe
wearing ski goggles bottle sitting on the juicy beef patties captures a vibrant, line art
?‘”d_ pas;lonately shelf at walmart a}nd melted chee§e kaleidoscopic bird in
singing silly songs. onsale. sits on top of a toilet

that looks like a a lush rainforest

throne and stands
in the middle of the
royal chamber.
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World Model

Big Picture of World Model

How to achieve world model:
* From the most general perspective, World Model =

Generation

H-

CO nt rOI Common control types in

autonomous driving

* Texts
* Destinations & Trajectories
» Ego-vehicle actions

|

— —

=

@ Simm—

— Ll T
°
>

angle & speed

|
]
|

command _trajectory

goal point
}
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Controllable Generation

Concept

e Z:arandom variable
 (:arandom variable.

i fo = o N b Y

(a) Caption: “A woman sitting in a restaurant with a pizza in front of her ”
Grounded text: table, pizza, person, wall, paper, window, bottle, cup

In a playful
cartoon setting,
a little elephant
stands atop a

In a playful
cartoon setting,

a little dinosaur

large turtle, following a boy
following a boy on the sea

on the sea beach ...

beach ...

Hierarchical Text-Conditional Image Generation with CLIP Latents
GLIGEN: Open-Set Grounded Text-to-Image Generation
AnyControl: Create Your Artwork with Versatile Control on Text-to-Image Generation.

a teddy bear on a skateboard in times square

OpenﬂriveLab




Controllable Generation

Typical methodology

Fine-tuning with control-image pairs:

Prompt ¢, Time ¢

I A i A
Text | [ Time | Condition ¢ o e
! Text @ ﬁéﬁﬁ Frozen Stable Diffusion
Encoder.

zero convolution
Input z,
. x (T —1)
Prompti&TLme Denoising n
SD Encoder Block A al SD Encoder Block A %3 ~_U-Net
64x64 64x64 (trainable copy) 5
I
SD Encoder Block B <3 SD Encoder Block B | == = ‘é e Image
32x32 8 32x32 (trainable copy) L ]
L,
@ Y
SD Encoder Block C — Denoising

16516 @

x3 fan &)

x3

Zy_y U-Net Zy

Zy
« L :
Trainable T2I-Adapter Details [ Fk Fi

1
1
SD Decoder o ! .
Block D 8x8 O zero convolution ) 3 c . @ xw, |T2I-Adapters { 2 5 I |
2 — e )
i £ > g = !
£ | 3 zero convolution x3 | Condition —>| £ & 2E g * |8 ZE :
. =
x3 e—— zero convolution x3 Cs oG : :
- | Scale 1 (64x64) Scale 4 (8x8) |

SD Decoder Block A

e x3 zero convolution x3

Output €y(z, t, ¢, ¢f)

Adding Conditional Control to Text-to-Image Diffusion Models
T21-Adapter: Learning Adapters to Dig out More Controllable Ability for Text-to-lImage Diffusion Models
AnyControl: Create Your Artwork with Versatile Control on Text-to-Image Generation.

(a) Stable Diffusion (b) ControlNet
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Predictive World Model

World model via controllable future generation

Predict future following the action signal: s;.1 = f(s;|a;)

input output
tokens tokens

I input image ] -
9 e V 9 ’

Action-controllable

world model -> 9 J
’ I output

—~—
Future Generation @ - |xction P
- X encoder 1 ' .
- : . ' video
= . autoregressive | =
_n ! prediction ! L
“I am approaching a 1 R R RS IR #* !I

crossing yielding -
to pedestr1ar‘1§. 9 taxi _)Z

“It is safe to move encoder -

so I am now n!

accelerating”

GAIA-1: A Generative World Model for Autonomous Driving
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Predictive World Model

World model via controllable future generation

Predict future following the action signal: s;.1 = f(s;]|a;)

Condition Input Autonomous-driving
Diffusion Model

Output

Future Driving Videos

Text
"Arealistic __, opp—s
diivilig Eomne CLIP Embedding - [
Action-controllable = 5 £ <
X e errencefmage I ‘ g@ — o § a
Future Generation = g8

HDMap H,

’ ! | = T i
7/ 2 Future Drlvmg Actions
T EELE
-A’B» otk XT N —>
= Ll
Actions A{! ‘01 —— ‘
T Temporal-attention J

68g | u = ] @ bed
]

19p02eq
uonoy

AN+M

DriveDreamer: Towards Real-world-driven World Models for Autonomous Driving
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Predictive World Model

World model via controllable future generation

time

- - e -

Lzero-init projectionJ

= T
0]
ke
0}
Q l
Qo high-level low-level
0 © P
: o L )
initial frame |3 A &>~
9» ommand goal point | trajectory  angle speed
multi-mnodal action controls

Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability
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Predictive World Model

World model via controllable future generation

Action control modes:

Method Model Setups Action Control Modes
Data Scale Frame Rate Resolution | Angle&Speed Trajectory = Command  Goal Point
DriveSim [96] 7h S5Hz 80x160 v
DriveGAN [63] 160h 8 Hz 256x256 v
DriveDreamer [118] 5h 12 Hz 128x 192 v
Drive-WM [120] S5h 2Hz 192x 384 v
WoVoGen [84] 5h 2 Hz 256x448 v
ADriver-I [57] 300h 2Hz 256x512 4
GenAD [130] 2000h 2Hz 256x448 v v/
GAIA-1 [50] 4700h 25 Hz 288x512 v
Vista (Ours) \ 1740h 10 Hz 576x1024 | v v v v

Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability

OpenﬂriveLab




Predictive World Model

World model via controllable future generation

-
» ——- S A \
—( R 0 L e T ™

/7 N —
TS

Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability
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Predictive World Model

World model in other modalities.

Current Observation Future GT HGra b B Prediction vs GT

# 84
Pedestrians Vehicles

Current Observation

Tafic on the ofher side of rosd |

S2Net — Point cloud future
prediction for planning

Copilot4D — LiDAR world model

4D-Occ — Ego Future Tracjectory with diffision technigues

0 0O "
\® \ 4

\ %/
2022 2023 2024
dali ViDAR
BEV Fiery Occupan Occworld — occupancy world model odality multi-modal world model
History Visual Inputs («&»)

V T 3D Occupancy t=15s t=2s t=25s - —
i 5
| i

o o Loy Lo Lo o

Low prob,

: | i 2
o T P e L —.—V;g;m;,o—n "W B i My (xslmy)  Future Point Cloud Predictions
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Frontiers and Challenges

How to use predictive world model?

Why do we study world model?

« As powerful simulator to train agent in an unsupervised manner.
» Help decision by imagining the future.

* As afoundation model.

Open.ﬂriveLab



Frontiers and Challenges

As powerful simulator.

Prevalence in Embodied Al, but underexplored in Autonomous Driving.

Start 17 Language plans generated by the VLM policy —l

@ W Move the blue cube Slide the green circle Move the yellow circle
to the bottom right to the top left to the bottom left ’

Simulated video plans

Why this situation? We think it is due to the much complex scenarios for
autonomous driving compared to robotics.

UniSim: Learning Interactive Real-World Simulators

Open.ﬂriveLab




Frontiers and Challenges

Autonomous Driving Scenarios v.s. Robotics

Open.ﬂriveLab




Frontiers and Challenges

Help the decision process by imagining the future.

Drive into the Future: Multiview Visual Forecasting and Planning with World
Model (CVPR 2024)

* Predicting future in advance and evaluating the foreseeable risks to empower autonomous vehicles for
better planning their actions and enhancing safety and efficiency on the road.

82" Imagined Future Scenario

.; v e

T [ '\]‘ 0¥ ,
Whether | should go straight? Decision after Imagination

OpenﬂriveLab



Frontiers and Challenges

Help the decision process by imagining the future.

Drive into the Future: Multiview Visual Forecasting and Planning with World
Model (CVPR 2024) —

Time step T (real)

. (5" Option 1: Go to the right lane <> Imagine with 775" Option 1: Go to the right lane \\»i’ 3z
< ()" diverse maneuvers & (®), &
<« A> Reward & Decision

Decision: Option 2
Decision: Option 3
(safe to overtake)

o) Option 2: Go straight @

<> Imagine with AL
AN,

()" diverse maneuvers o A
<«At> v/ X
O &%
Reward & Decision

Q

Continue rollout ...

3
<
B £

/j) Option 3: Go to the left {ane@

i 3 :
! @ @ ! {\:‘ Option 3: Go to the left lane
i Accepted Option |

Time step T + 2K (imagination)

T Time step T + K (imagination)
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Frontiers and Challenges

Help the decision process by imagining the future.

Drive into the Future: Multiview Visual Forecasting and Planning with World
Model (CVPR 2024)

S : ] L. Imagined
[ Planner Actions 1 World Model ™ Futures ]
Accepted | [  Making _ Reward ]
[ action | Decision Reward = Functions Imagination-then-Decision
L2 L Collision (%) L pipeline enhances the overall
m ollision (%
Method soundness of planning.
Is 2s 3s Avg.| Is 2s 3s Avg. P 8

VAD (GT cmd)

041 0.70 1.05 0.72

0.07 0.17 0.41 1 0.22

VAD (rand cmd)

Ours

0.51 0.97 1.57 1.02
0.43 0.77 1.20 0.80

0.34 0.74 1.72 0.93
0.10 0.21 0.48 0.26
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Frontiers and Challenges

Serve as powerful foundation model

Visual Point Cloud Forecasting enables Scalable Autonomous Driving (CVPR
2024, Highlight)
* Visual point cloud forecasting captures the synergic learning of semantics, 3D structures, and temporal
dynamics. Hence it shows superiority in various downstream tasks.

VIDAR Pre-training @ Multi-vit?tw @ "I‘ergpfl)ral
G ;
Visual Point Could Forecasting S ; e

- I o - 3 . C 'o{ % e
“ _ VIDAR Model g@%g o ! "

5 t 1 t+2
Multi-frame Multi-view Images ____.---

*---..____Multi-frame Point Clouds

t t t
t 1 t

Future BEV Queries I Future Ego-motion

+ i~
e ()~

1

1

1

1

1 _,| History |_, Latent _,| Future | _| Future |_| Future |_,
! Encoder Rendering Decoder Decoder Decoder
1

1

1

i

1

o s i
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Frontiers and Challenges

Serve as powerful foundation model

Visual Point Cloud Forecasting enables Scalable Autonomous Driving (CVPR
2024, Highlight)

- - -
[ 3D Object Detection ] ViDAR: A Visual Autonomous Driving Pre-training Model
History Visual Inputs )

i t-1 i t
[ Semantic Occupancy Prediction ]
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Frontiers and Challenges

Summary

How to use world model for autonomous driving is still a big problem!
» Assimulator: too complicated driving scenarios, hard to simulate.

« Decision maker: so slow inference, hard to make it real-time.

* Foundation model: Performance bottleneck?
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One-page Takeaway

- Roadmap of predictive world model for autonomous driving

- Introduction of generation model & controllable future prediction

- Frontiers and challenges in utilizing predictive world models
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Introduction to Generative Models
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