Simulation-Powered Human-Centered Embodied Perception and Interaction

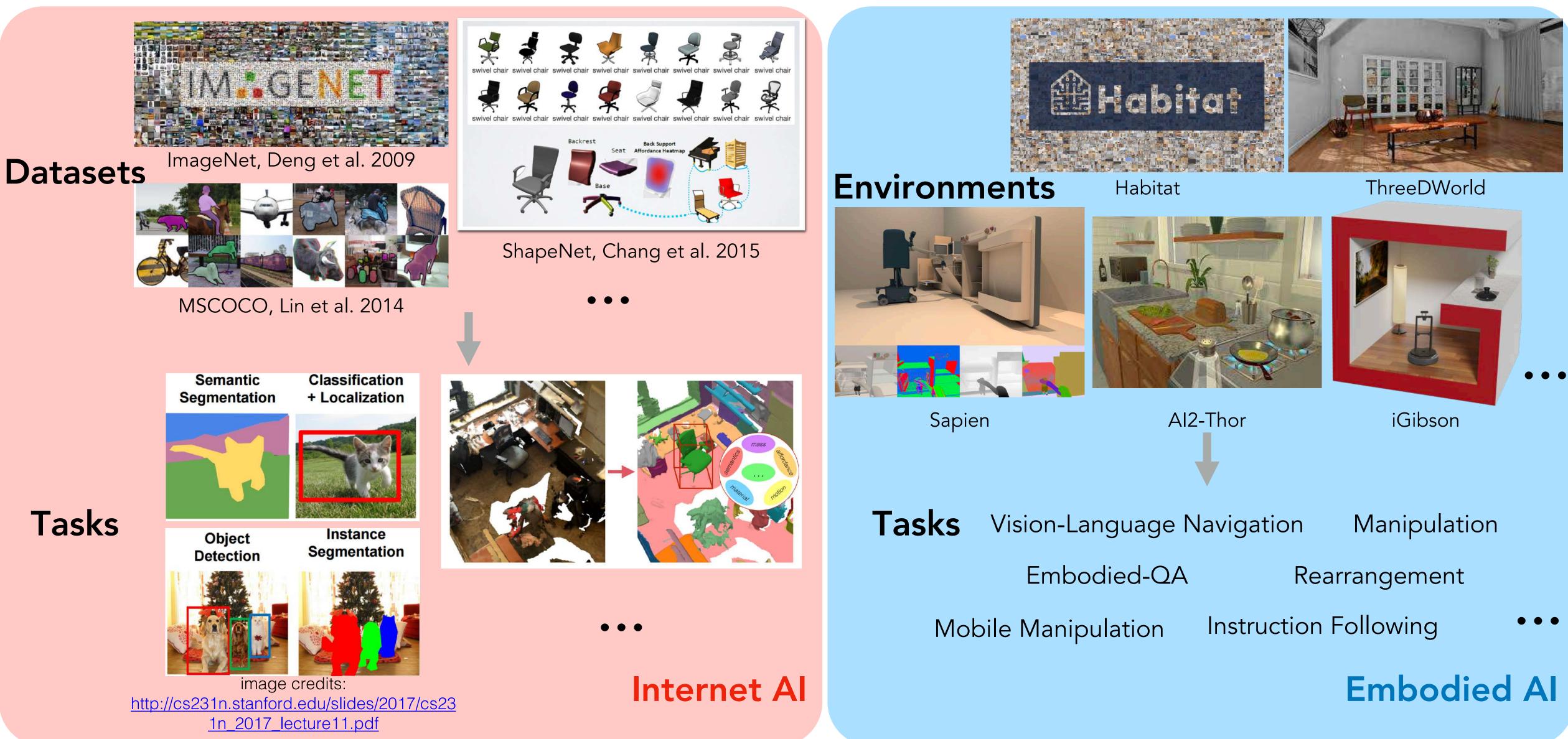
Li Yi June 9, 2024

Self Introduction

Li Yi (弋力)

- 2009 2013, B.E. @ Tsinghua University
- 2013 2019, Ph.D. @ Stanford University
- 2019 2021, Research Scientist @ Google Research
- 2021 now, Assistant Professor @ Tsinghua University
- Research: 3D Visual Computing and Embodied Perception
- Homepage: https://ericyi.github.io/
- Email: ericyi0124@gmail.com

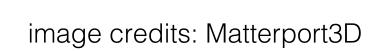
Internet Al to Embodied Al



Embodied Al

Embodied Task Execution

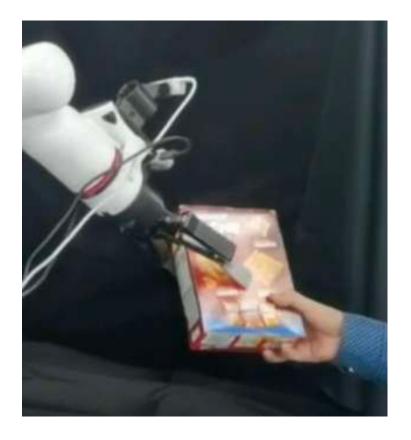
Embodied Agent



Environment

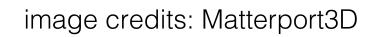
Human-Centered Embodied Al

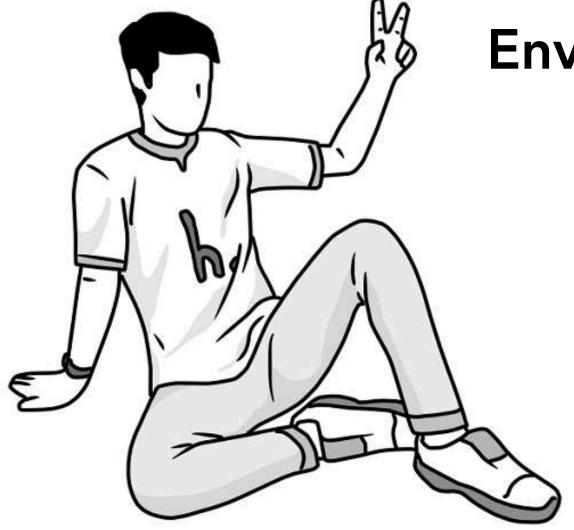
Embodied Agent



Human Robot Interaction

Handover

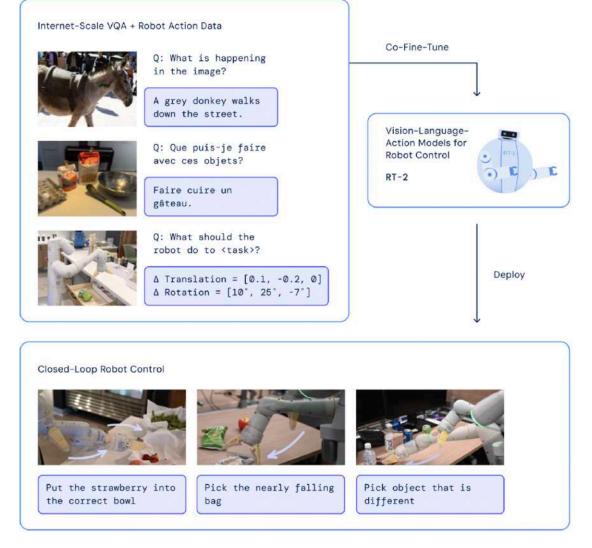




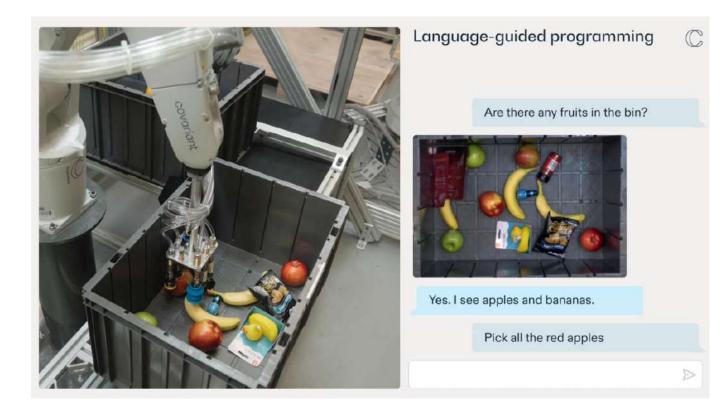
Environment

Human

How to Learn?



Google RT-1/2/X



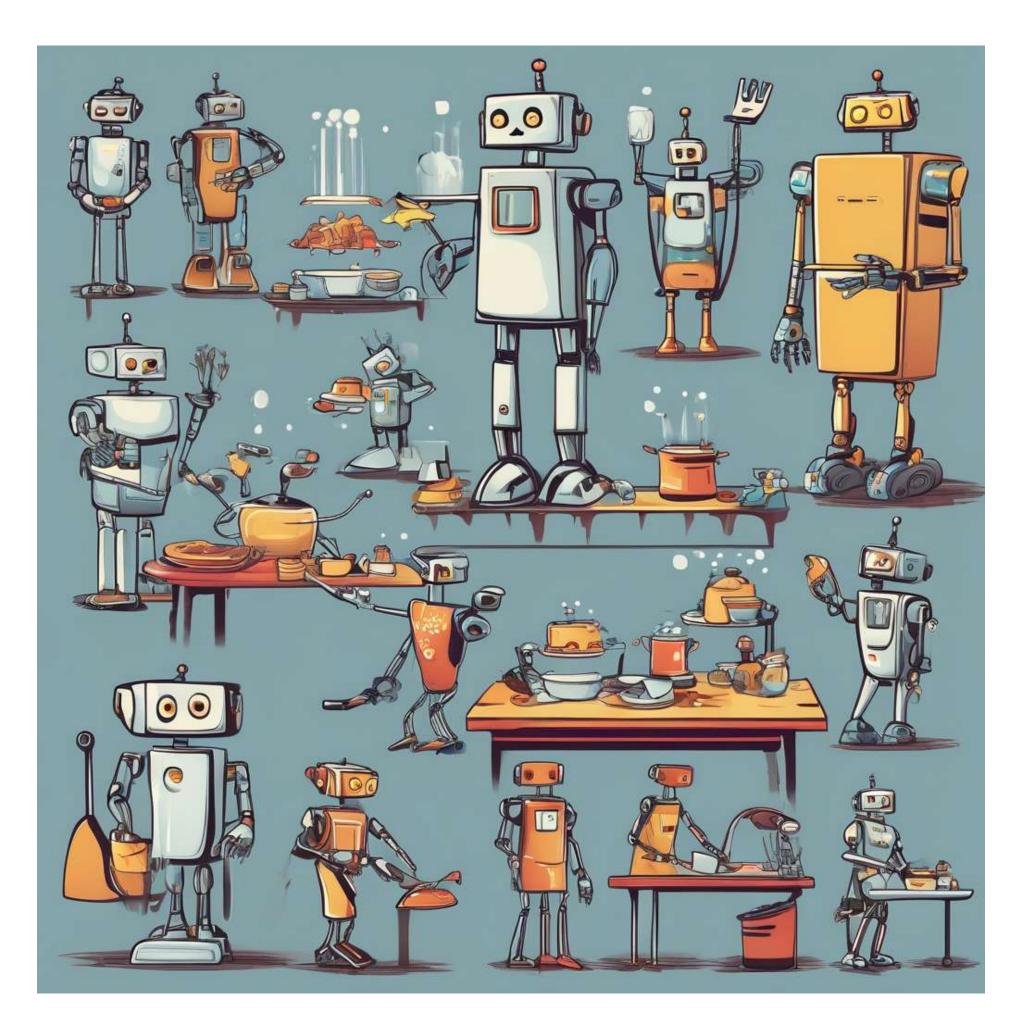
Covariant

Stanford Mobile Aloha

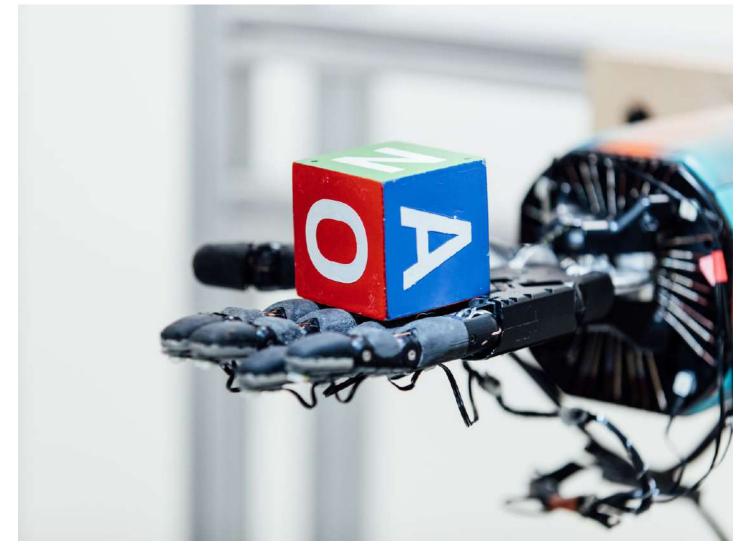
Figure 01

Goal: Embodied Generalist

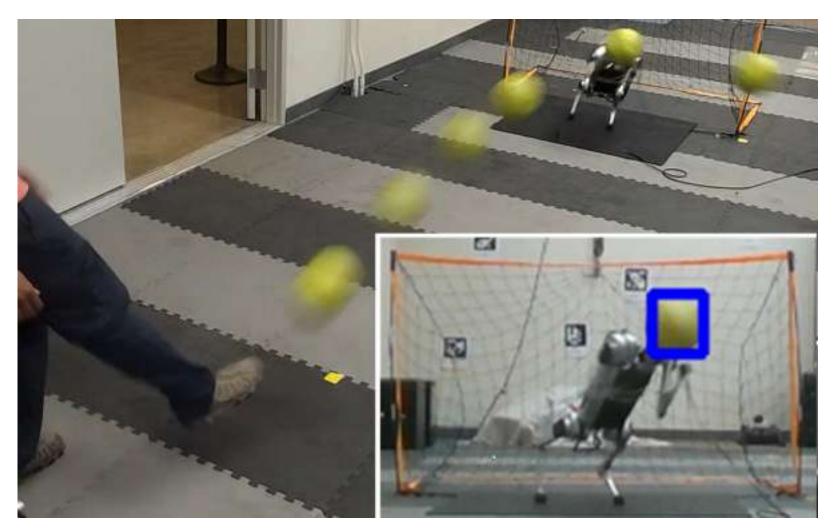
A tremendous amount of tasks in the open world



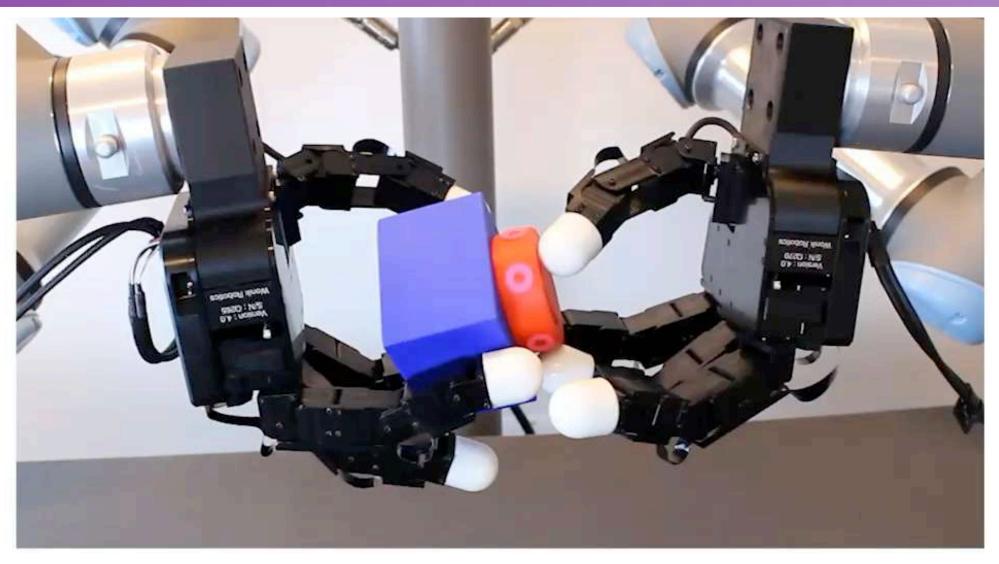
Reality: Embodied Specialists



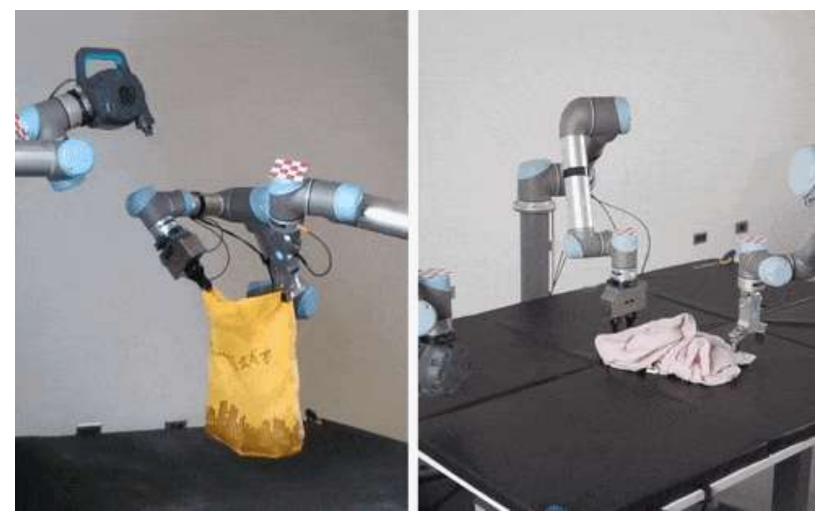
OpenAl, 2018



Huang et al., IROS 2023



Lin et al., 2024



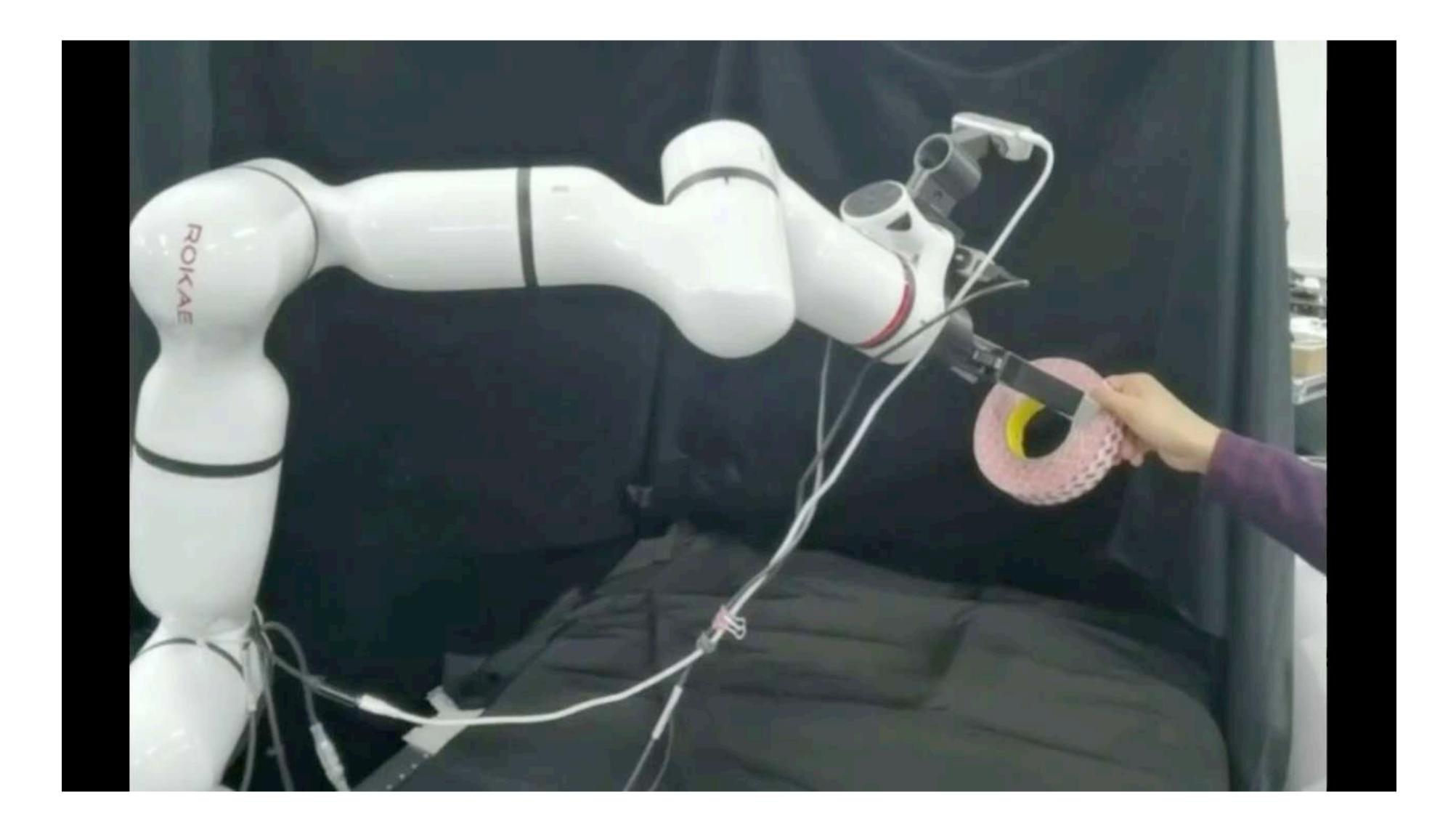
Xu et al., RSS 2022

In the Open World?

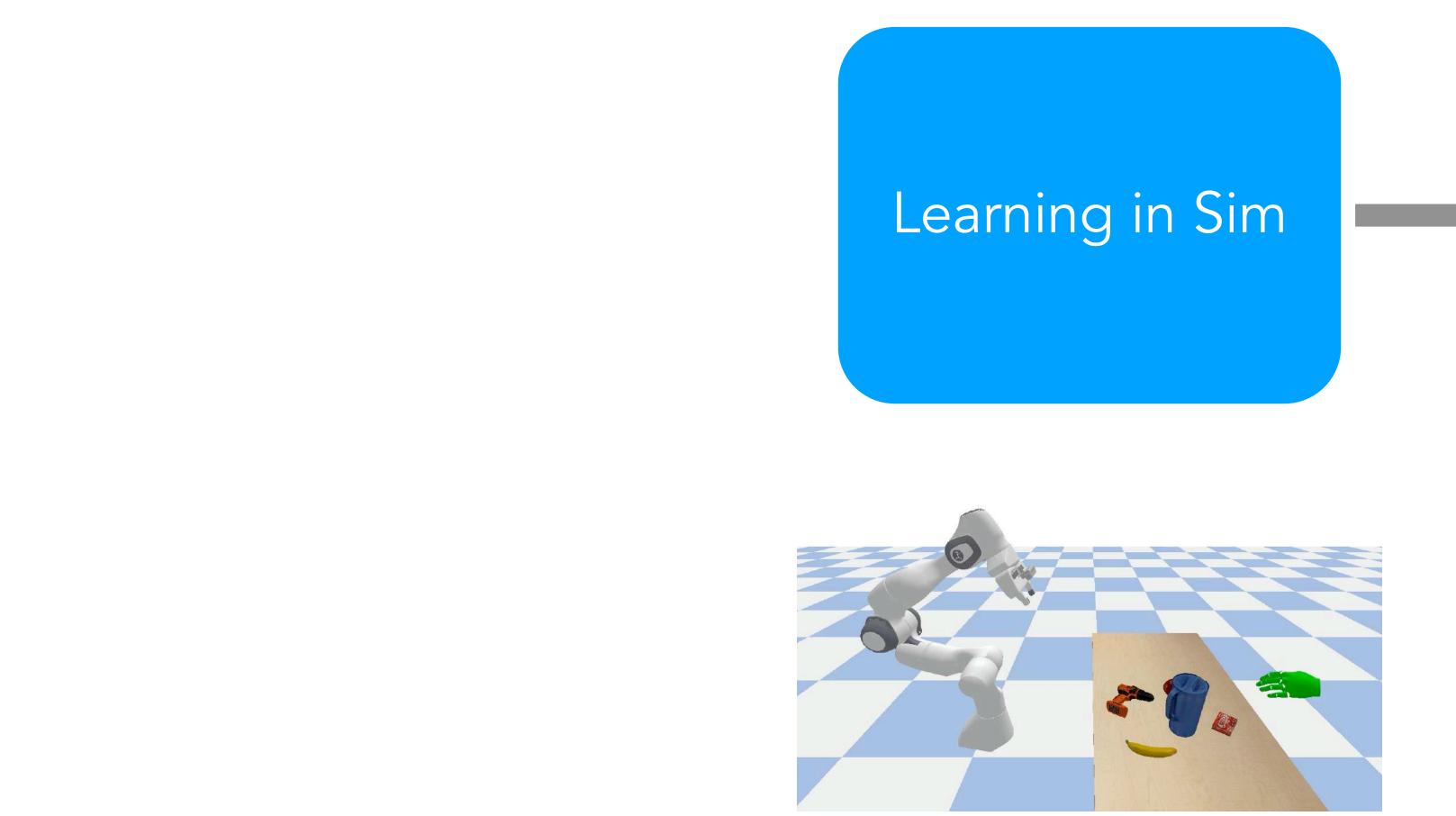


https://www.youtube.com/watch?v=k3GKGDng7k0

Safety Issues



A Sim-to-Real Solution



Deploying in Real

Lessons from Foundation Models

Imagine you are a robot agent in the house. There is a mobile phone on the dining table in the dining room, and you are in the living room. Write a short article about how would you walk through the house to grab the mobile phone with your robotic arm step by step. Include several high-quality photographs to illustrate your procedure.

As a robot agent in the house, I would walk through the house to grab the mobile phone in the dining room as shown in the image below.

First, I would look around the living room to make sure the area is safe and there are no obstacles or people that I need to avoid. I would then walk towards the dining room and stop before entering the room. Next, I would look for the mobile phone on the table, as shown in the image below.

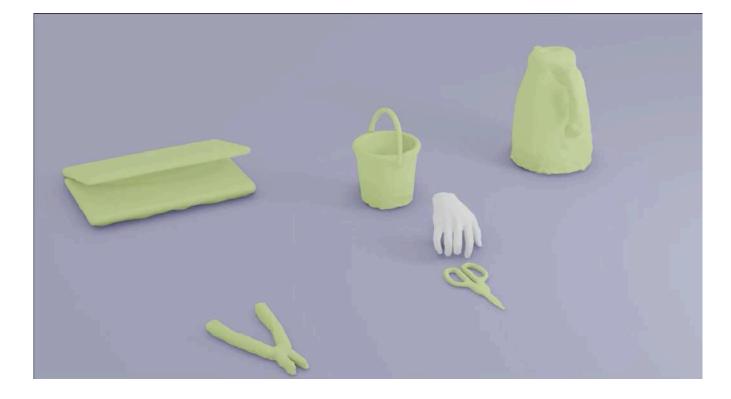
Once I have identified the phone, I would then move closer to it and extend my robot arm to grab it, as shown in the image below.

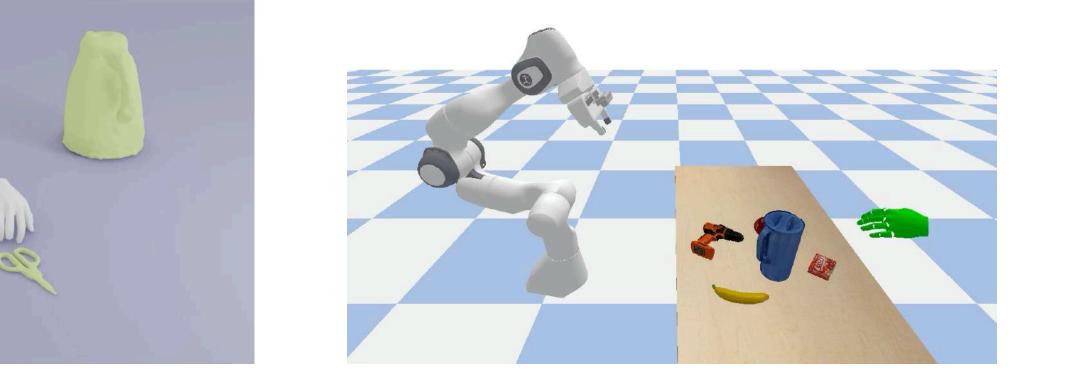
DreamLLM: Synergistic Multimodal Comprehension and Creation Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian Sun, Hongyu Zhou, Haoran Wei, Xiangwen Kong, Xiangyu Zhang, Kaisheng Ma, Li Yi. In submission

-

A Real-to-Sim-to-Real Solution

Creating Sim from Real





Learning in Sim

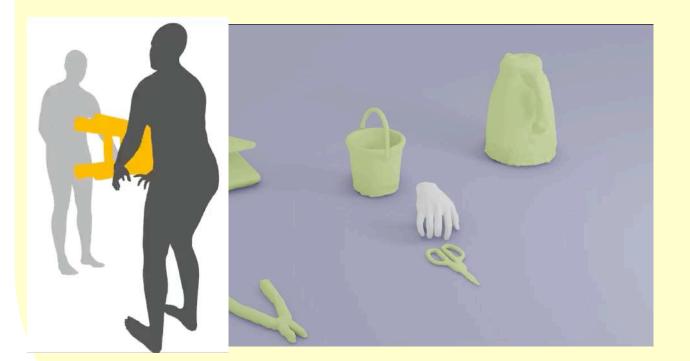
Deploying in Real

Human Interaction Capturing

Human Interaction Capturing

Data Driven

Human Interaction Synthesis

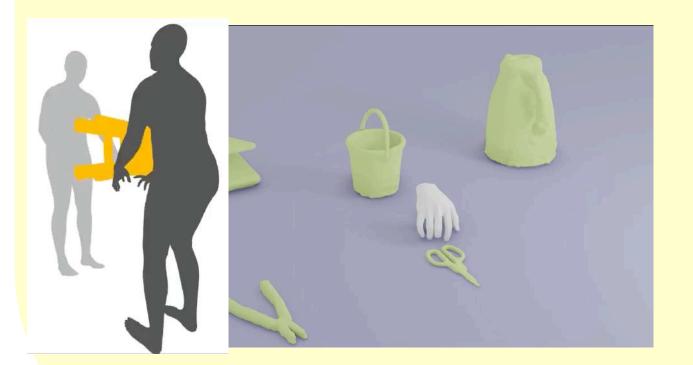


Human Interaction Capturing

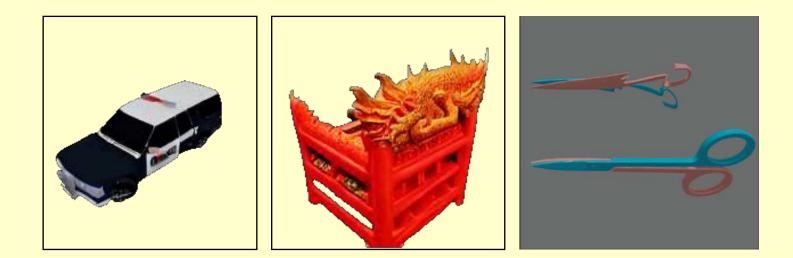
Interactable Asset Creation

Data Driven

Human Interaction Synthesis



Police Car Dragon Chair Scissor



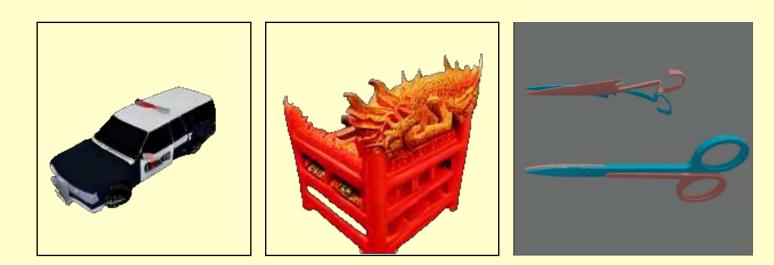
Human Interaction Capturing

Interactable Asset Creation

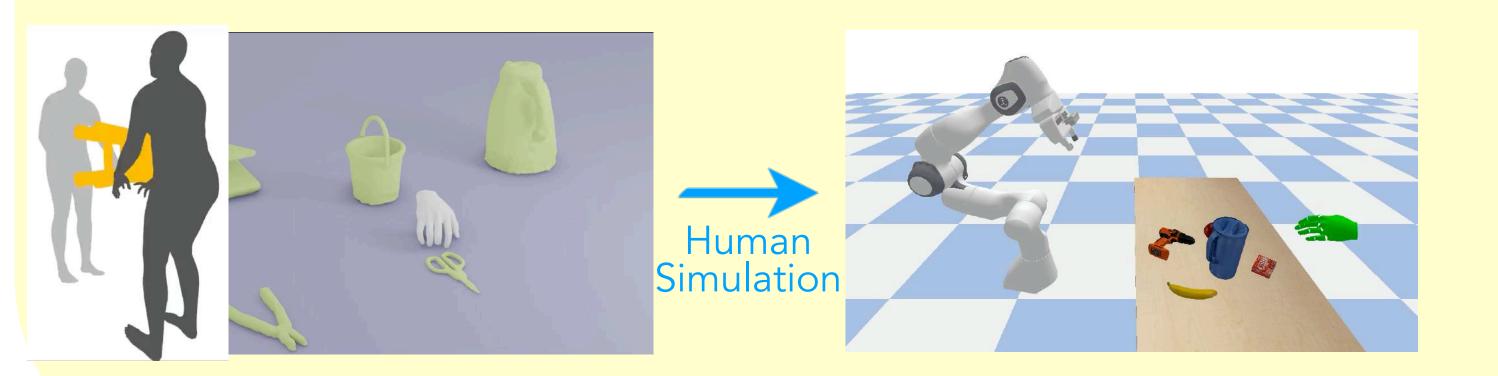
Data Driven

Human Interaction Synthesis

Police Car Dragon Chair



Human-Centered Robot Simulator



Scissor

Asset Support

Human Interaction Capturing

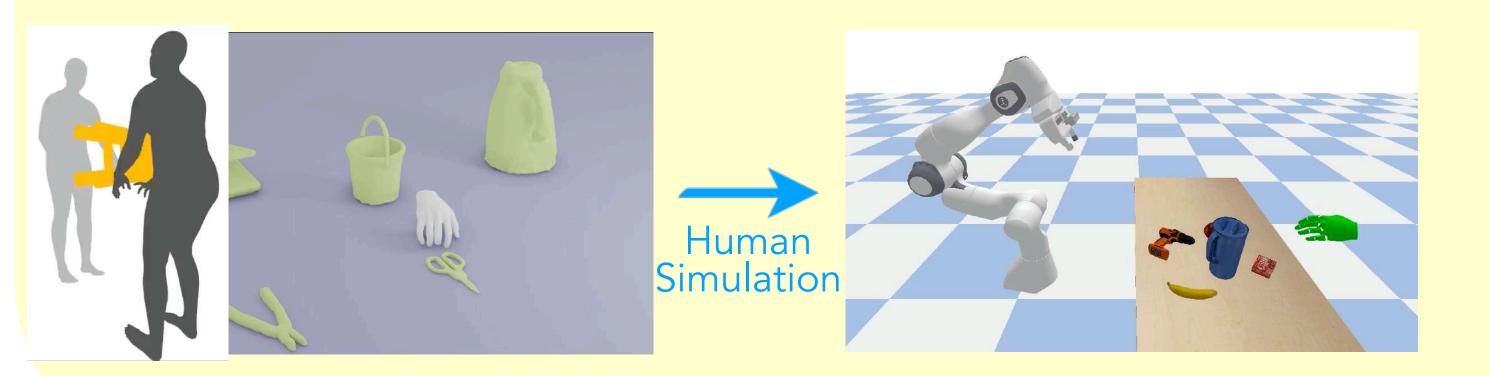
Interactable Asset Creation

Data Driven

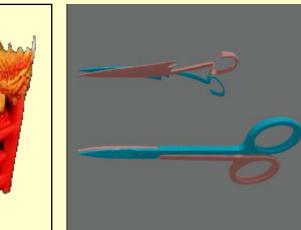
Human Interaction Synthesis

Police Car Dragon Chair

Human-Centered Robot Simulator



Scissor



Asset Support

Human-Centered EAI

Human Interaction Capturing

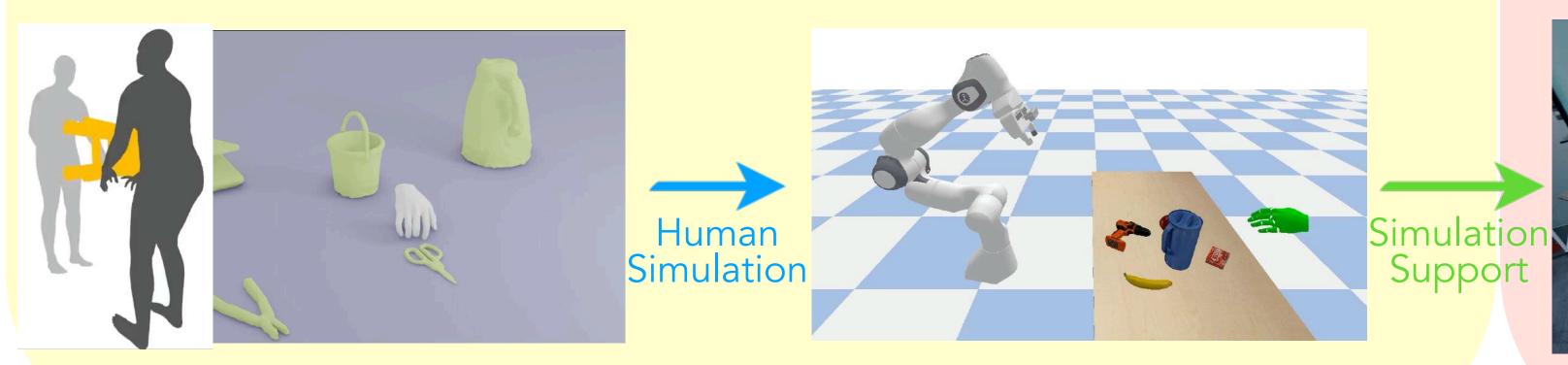
Interactable Asset Creation

Data Driven

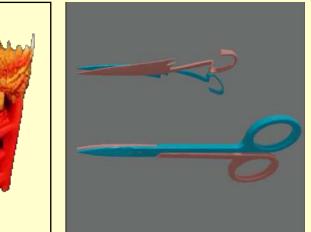
Human Interaction Synthesis

Police Car Dragon Chair

Human-Centered Robot Simulator



Scissor



Asset Support



Visual Perception

Human-Centered Robotics

Collaborative Transport

Human-to-Robot Handover

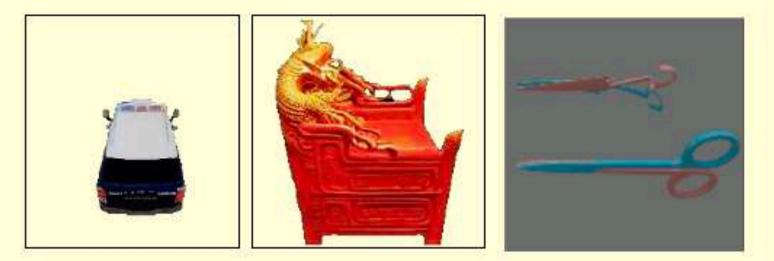
Human-Centered EAI

Human Interaction Capturing

Data Driven

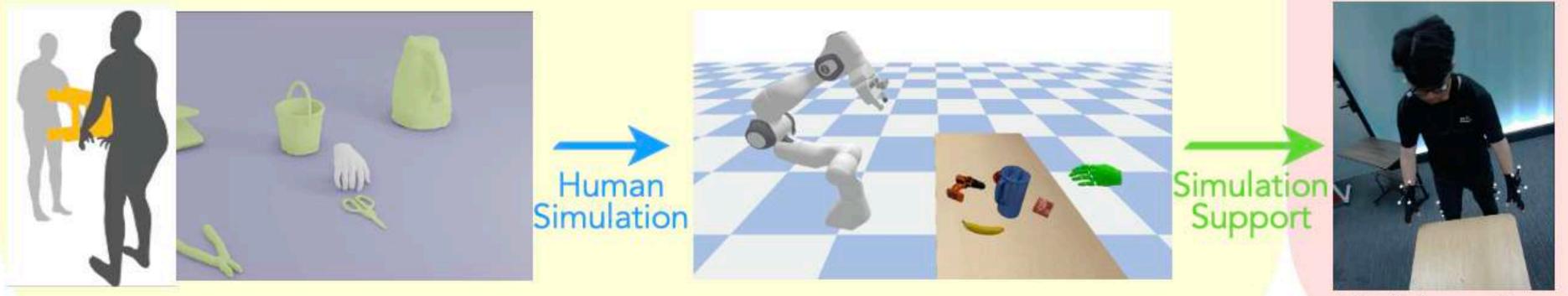
Interactable Asset Creation

Police Car Dragon Chair Scissor



Human Interaction Synthesis

Human-Centered Robot Simulator



Asset Support

Visual Perception

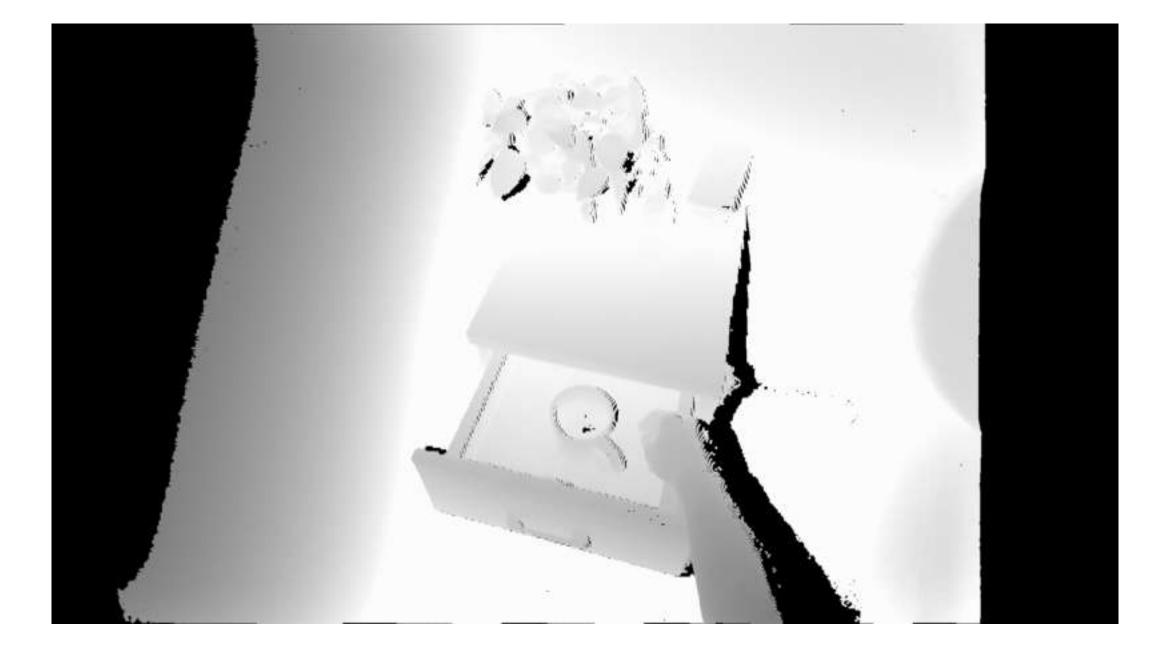
Human-Centered Robotics

Collaborative Transport

Human-to-Robot Handover

Human-Centered EAI

Egocentric Perception in HOI



Hand pose

Semantics

Object pose

Actions & Intention

Physics

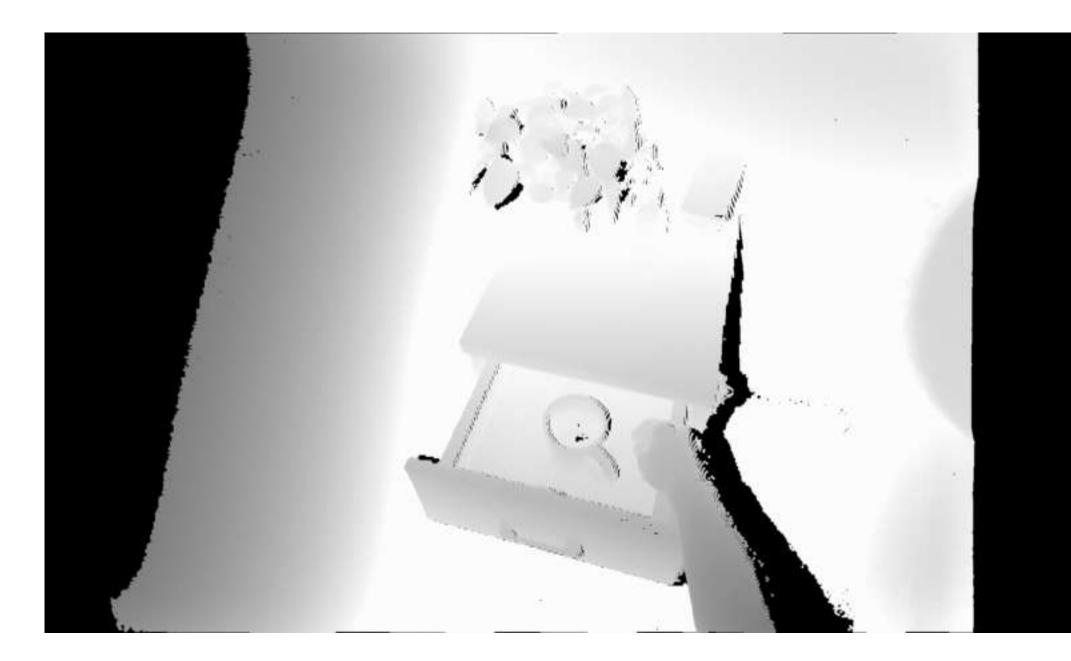
Structure

. . .

HOI4D Dataset

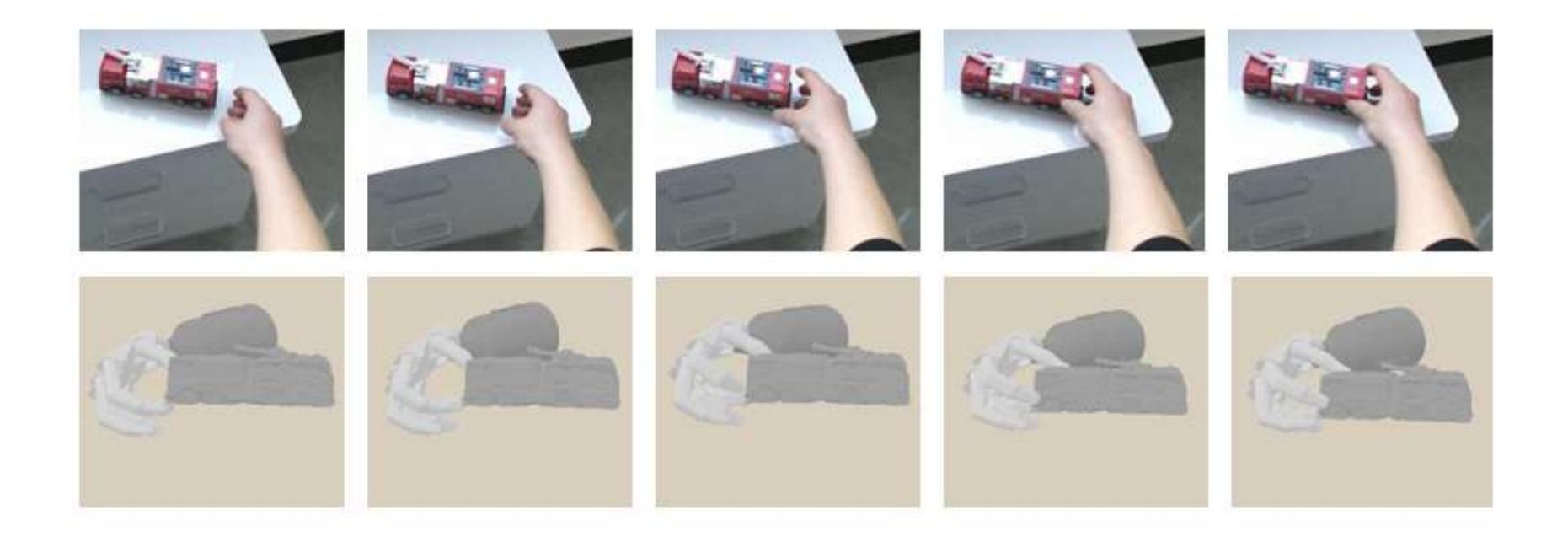
• The first dataset for 4D egocentric category-level human-object interaction

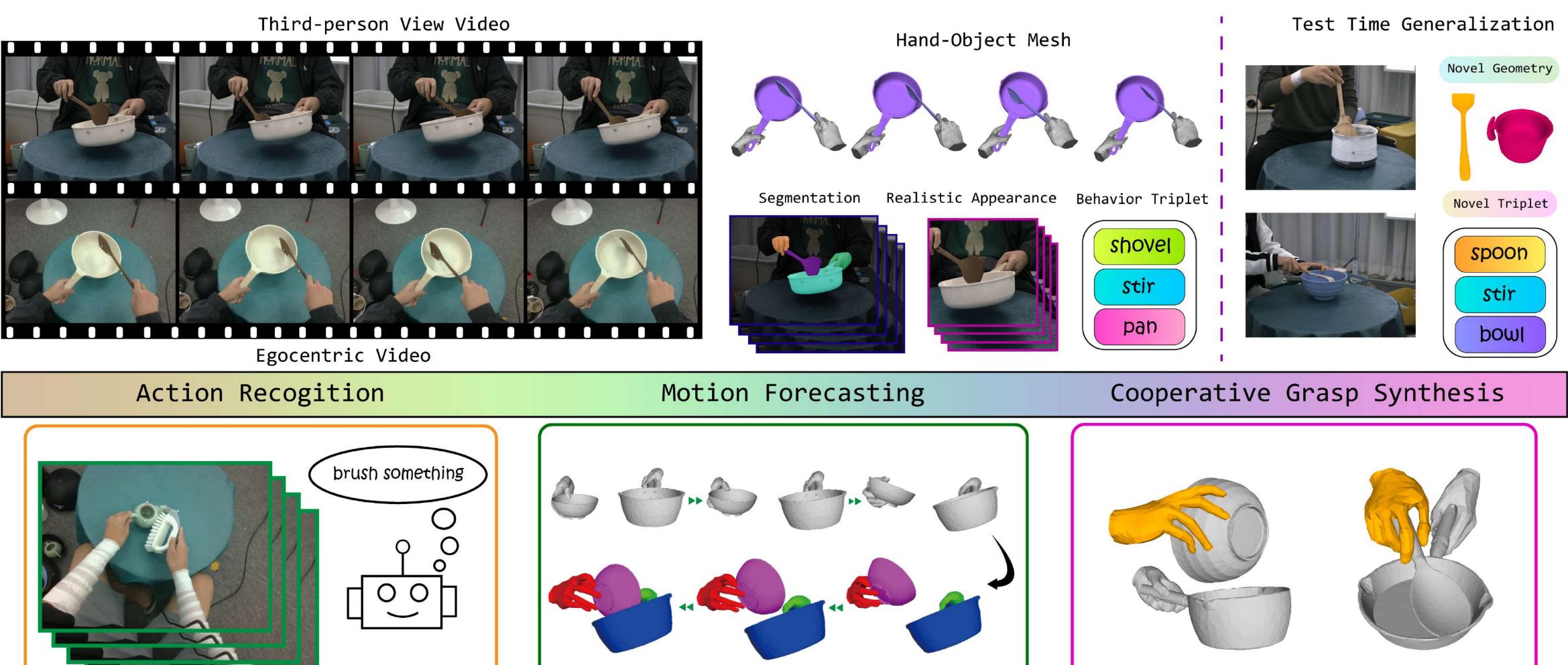
HOI4D: A 4D Egocentric Dataset for Category-Level Human-Object Interaction Yunze Liu*, Yun Liu*, Che Jiang, Kangbo Lyu, Weikang Wan, Hao Shen, Boqiang Liang, Zhoujie Fu, He Wang, Li Yi. CVPR 2022

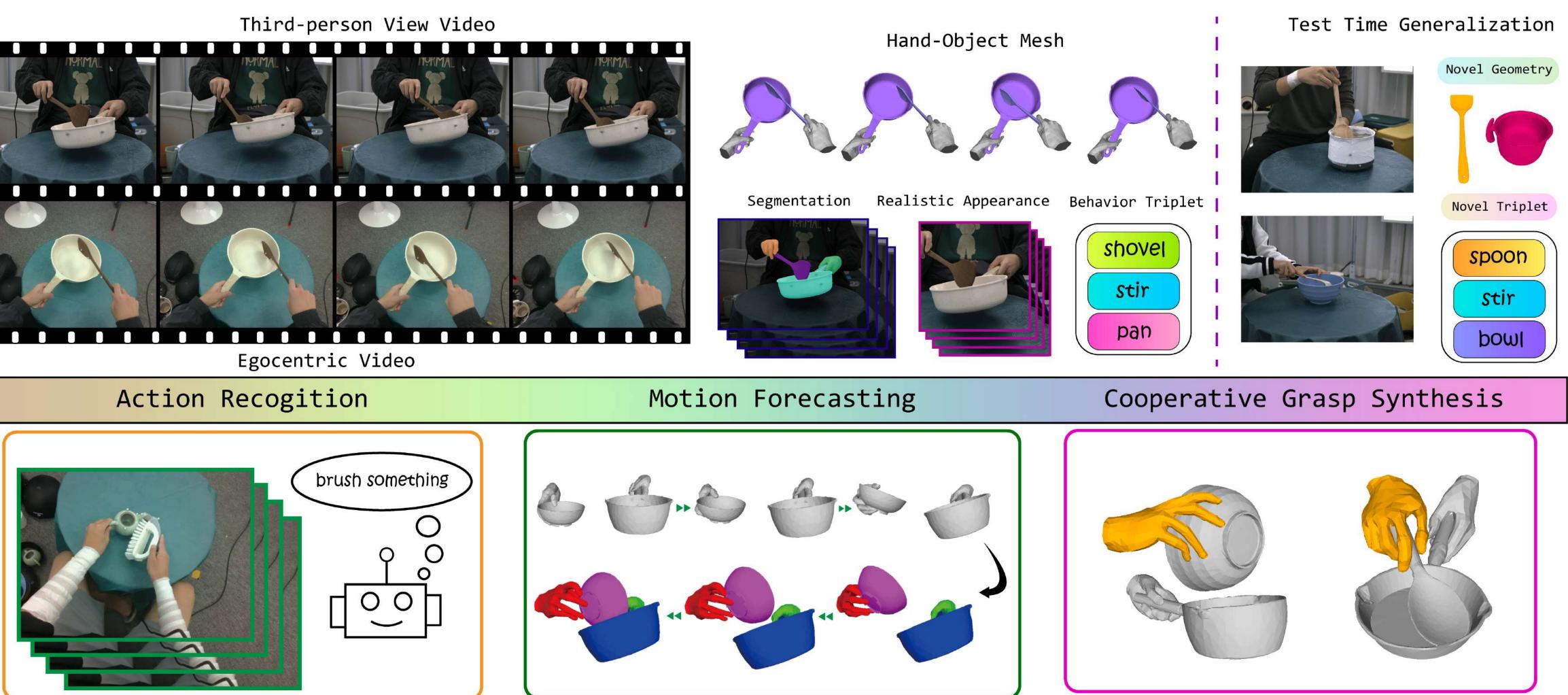


Application - Robot Learning from Human Demonstration

Learning robotic dexterous manipulation from human demonstration

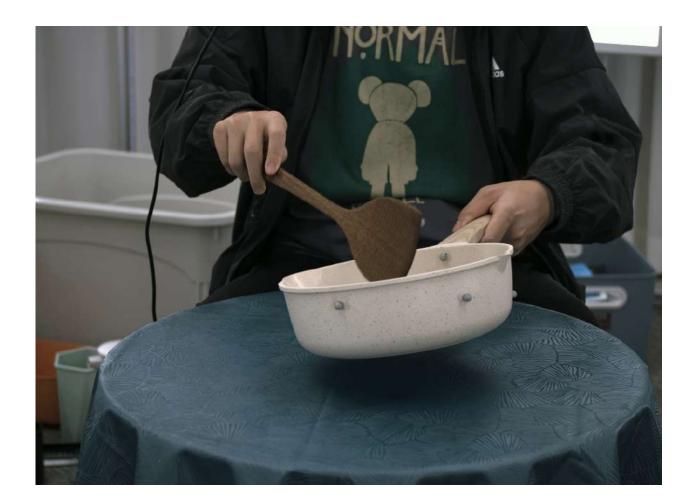


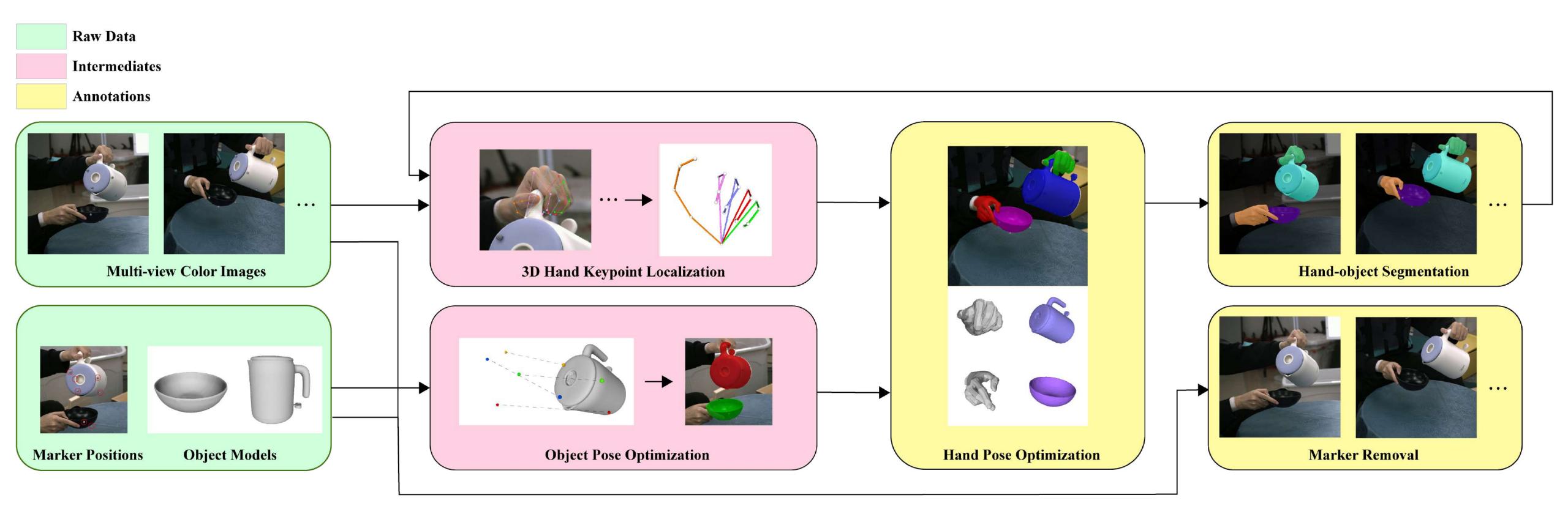




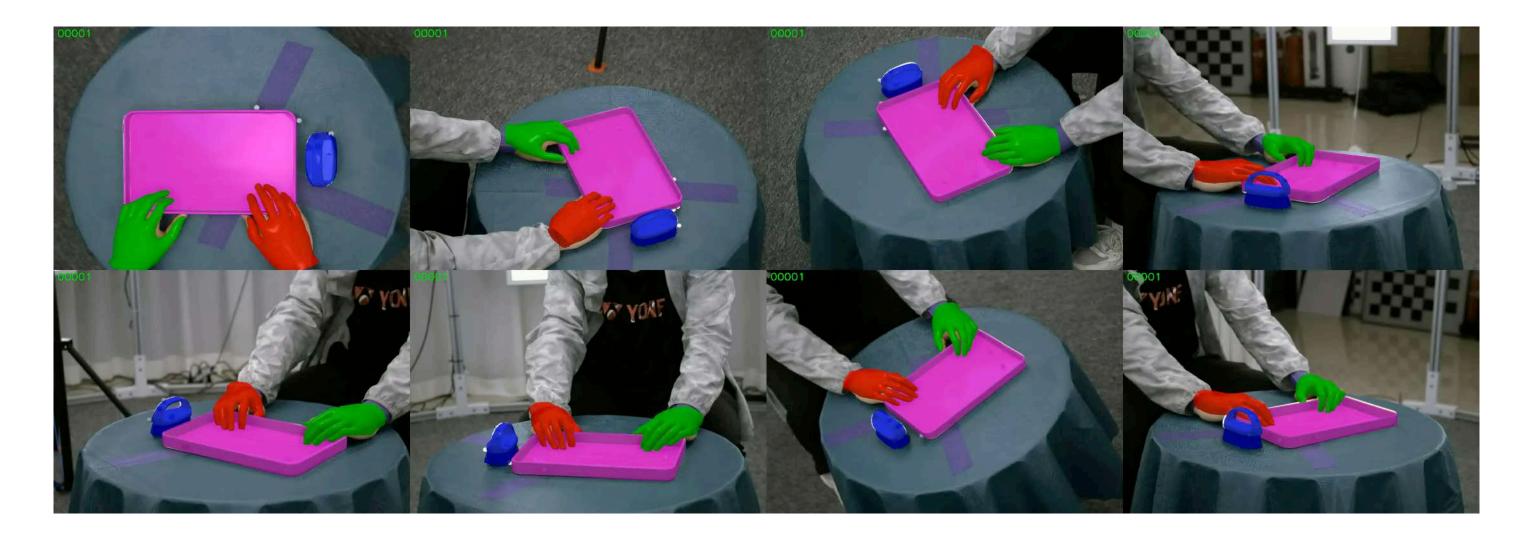
TACO: Benchmarking Generalizable Bimanual Tool-ACtion-Object Understanding Yun Liu, Haolin Yang, Xu Si, Ling Liu, Zipeng Li, Yuxiang Zhang, Yebin Liu, Li Yi. CVPR 2024

- 2,500 Hand-object Manipulation Sequences
- **131 Tool-ACtion-Object Compositions**
- 5,200,000 RGB Frames
- **20 Object Categories**
- **196 Object Models**
- **15 Actions**
- **14 Actors**
- **Automatic Annotation**

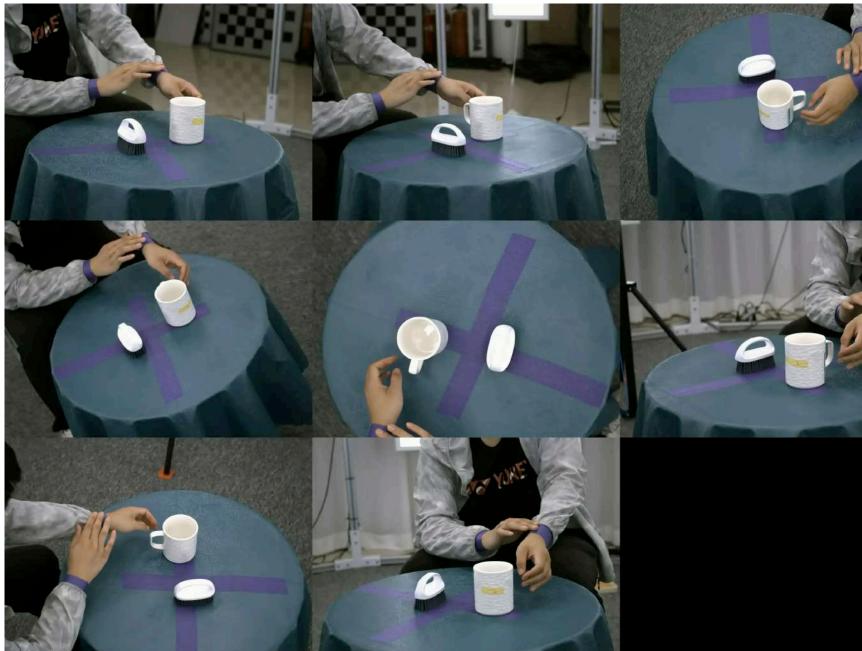




automatic data aquizition pipeline



4D hand-object mesh sequences



realistic hand-object appearances

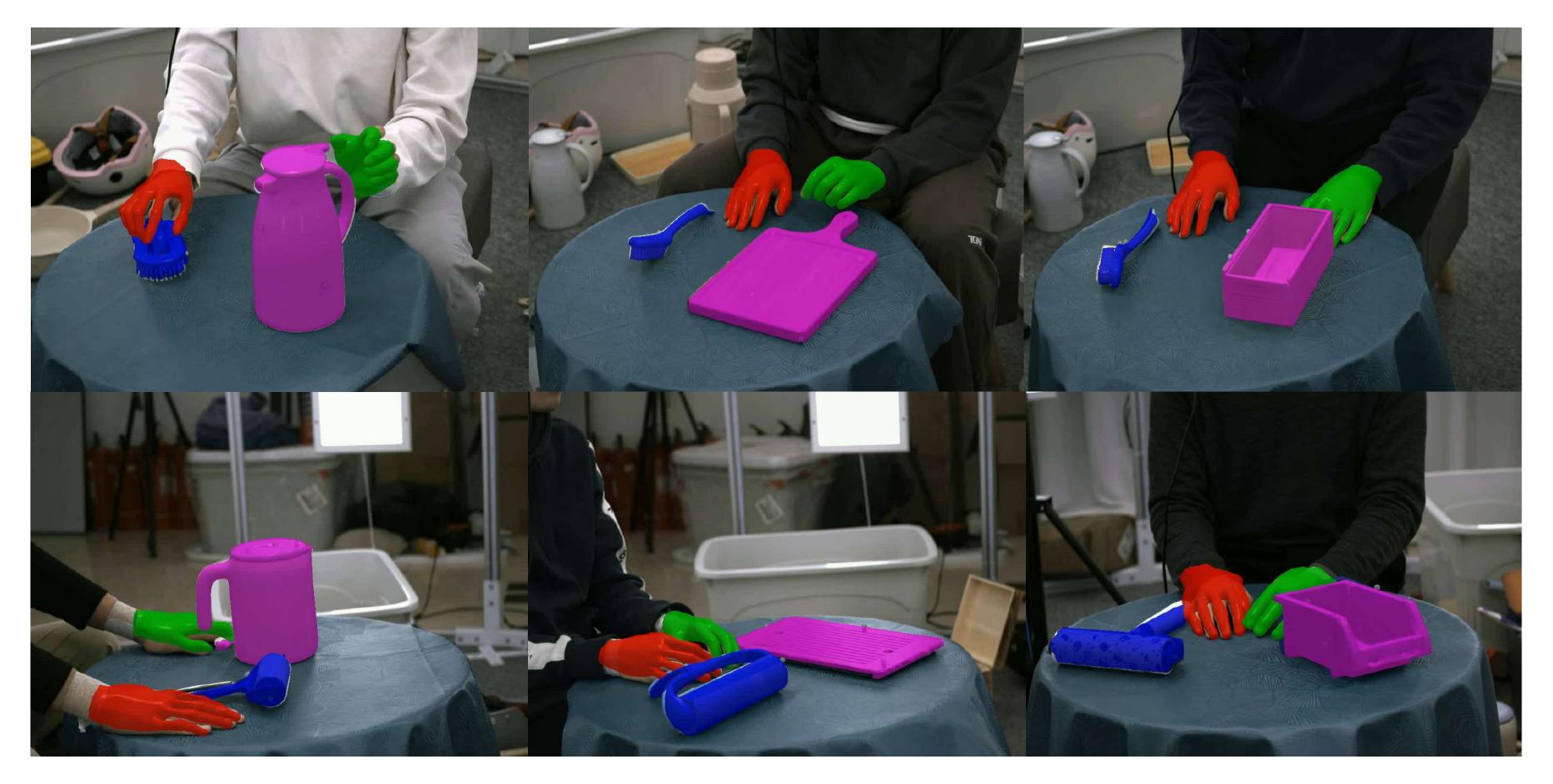
TACO Diversity

dust

brush

roller

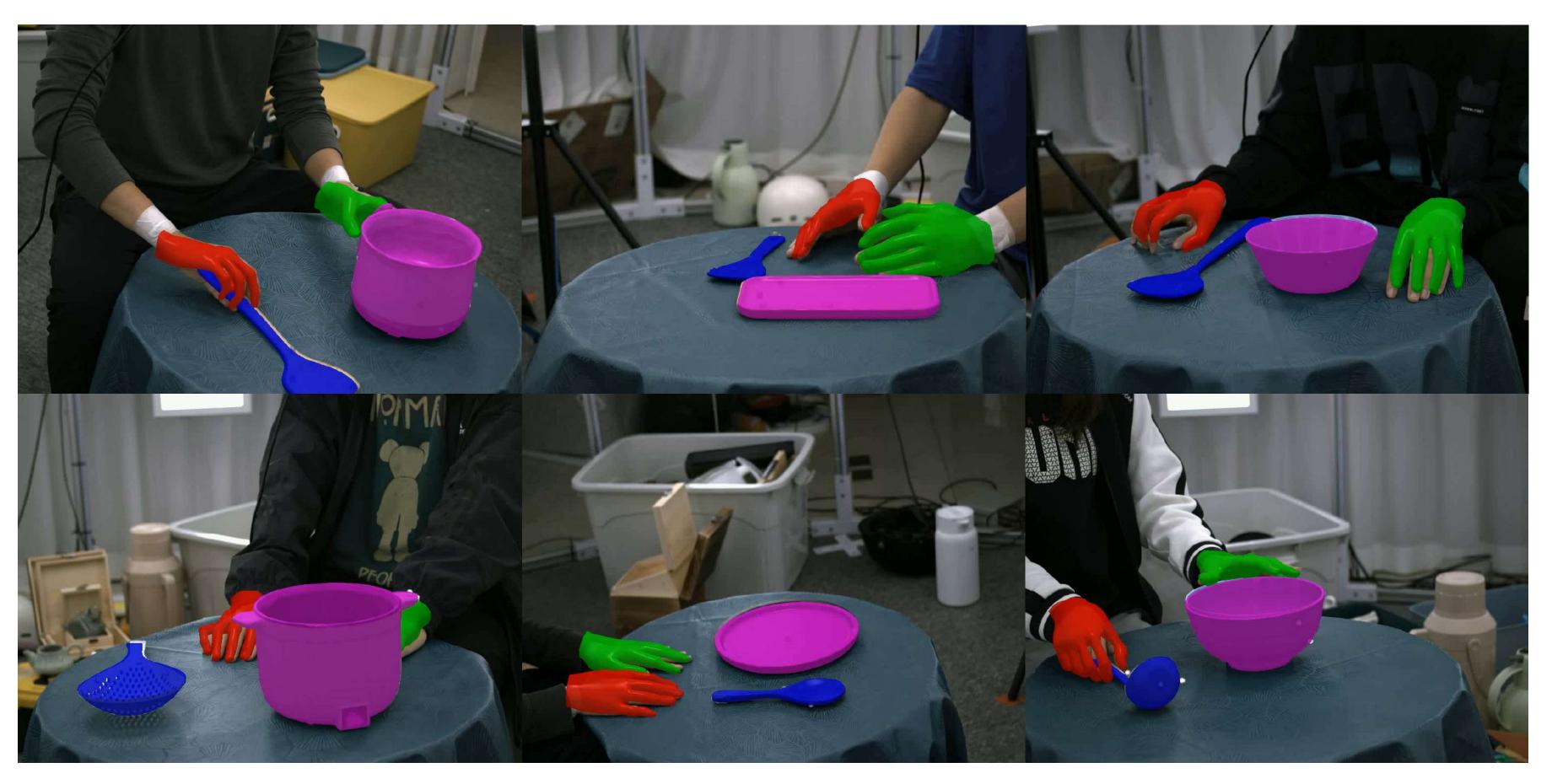
kettle



TACO Diversity

Stir

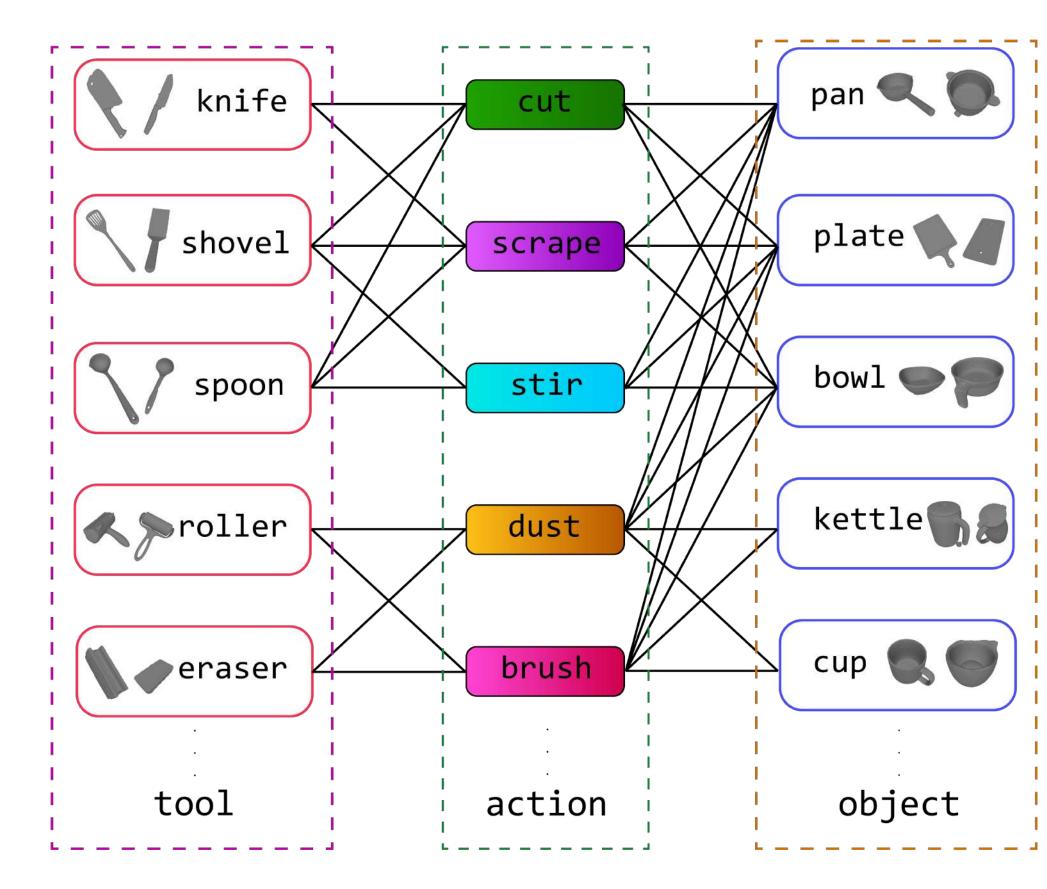
pan



shovel

spoon

bowl

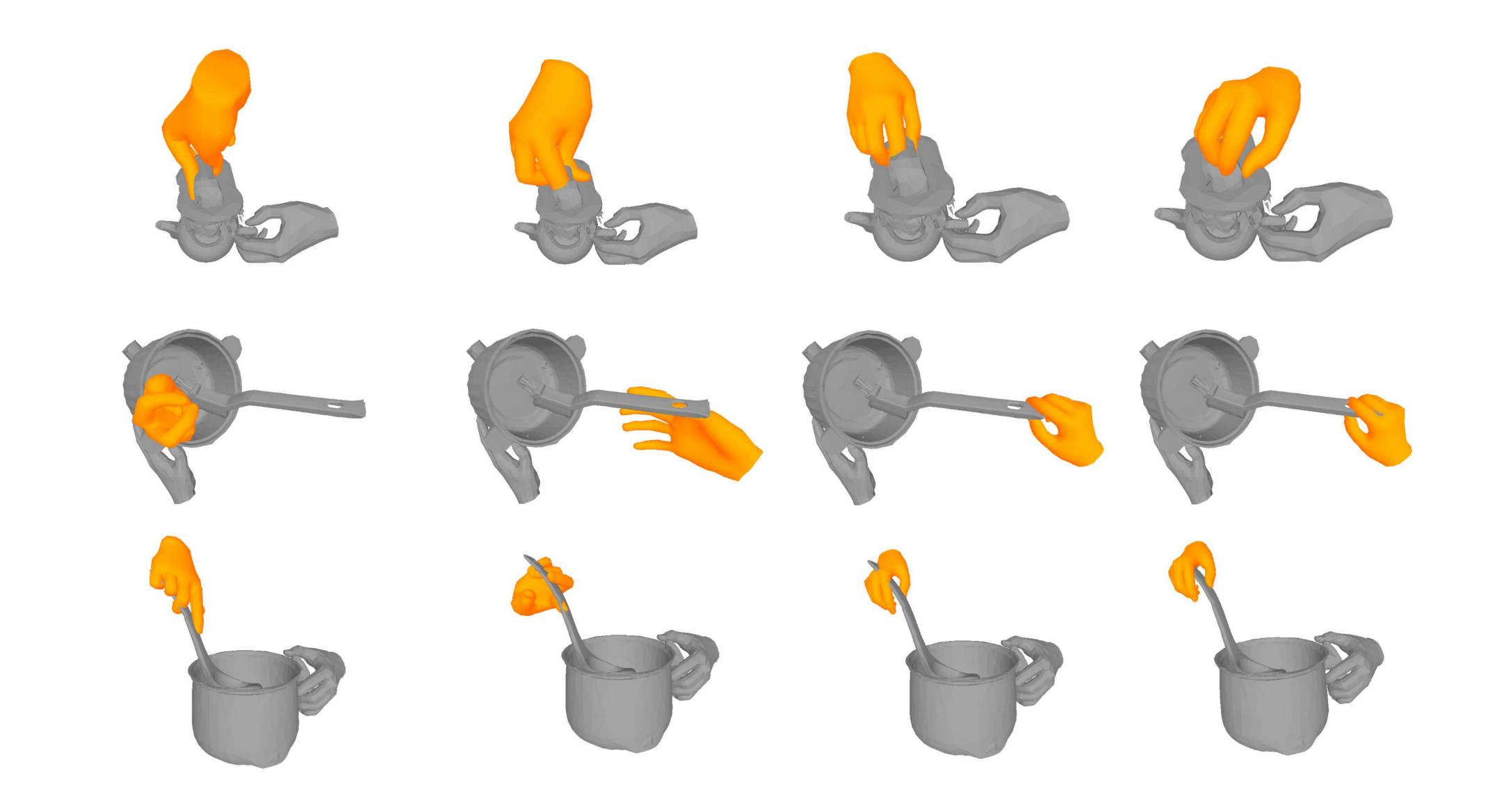


correlated interaction triplets

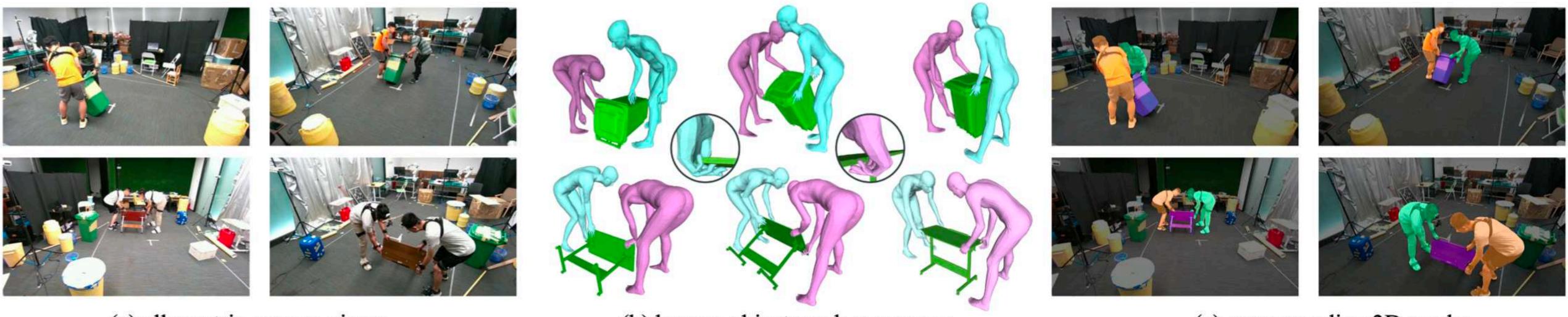
Supporting different generalization purposes:

- test set 1: no generalization
- test set 2: geometry generalization
- test set 3: triplet generalization
- test set 4: compound generalization: novel tool \bullet category

Application – Cooperative Grasp Synthesis



Social Behavior Capturing



(a) allocentric camera views

CORE4D: A 4D Human-Object-Human Interaction Dataset for Collaborative Object REarrangement Chengwen Zhang, Yun Liu, Ruofan Xing, Bingda Tang, Li Yi. In submission

(b) human-object mesh sequences

(c) corresponding 2D masks

Human Interaction Capturing

Interactable Asset Creation

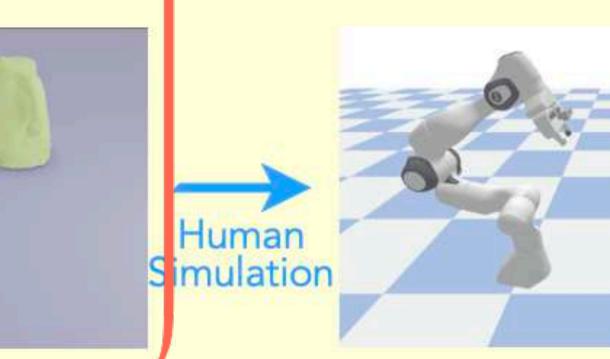
Data Driven

Human Interaction Synthesis

Police Car Dragon Chair



Human-Centered Robot Simulator

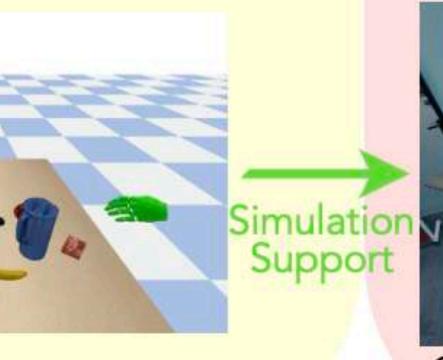


Scissor

Asset Support

Visual Perception

Human-Centered Robotics

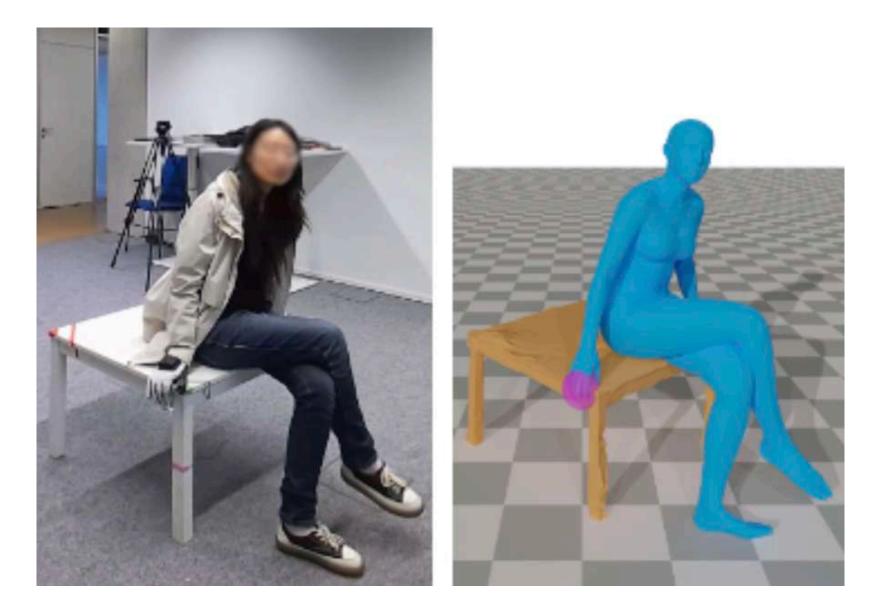


Collaborative Transport

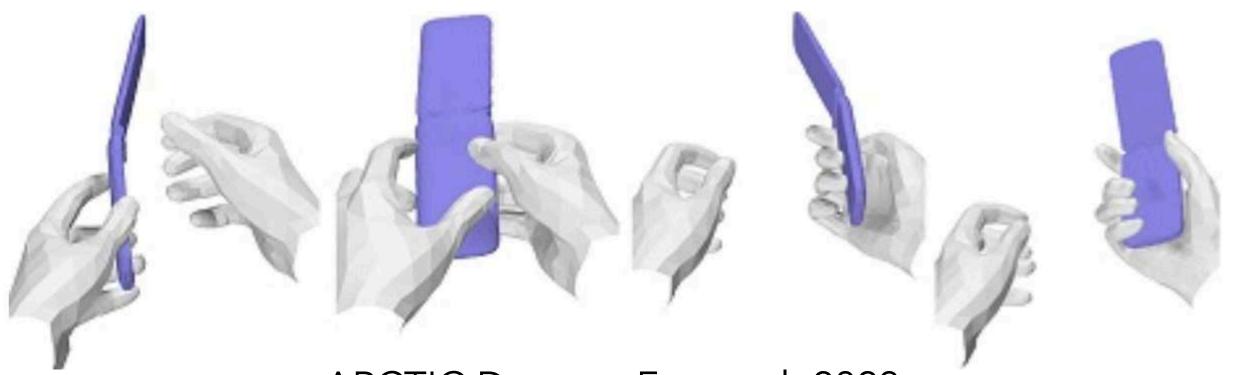
Human-to-Robot Handover

Human-Centered EAI

Interaction Synthesis on Different Levels



BEHAVE Dataset, Bhatnagar et al. 2022



ARCTIC Dataset, Fan et al. 2023

EgoBody Dataset, Zhang et al. 2022

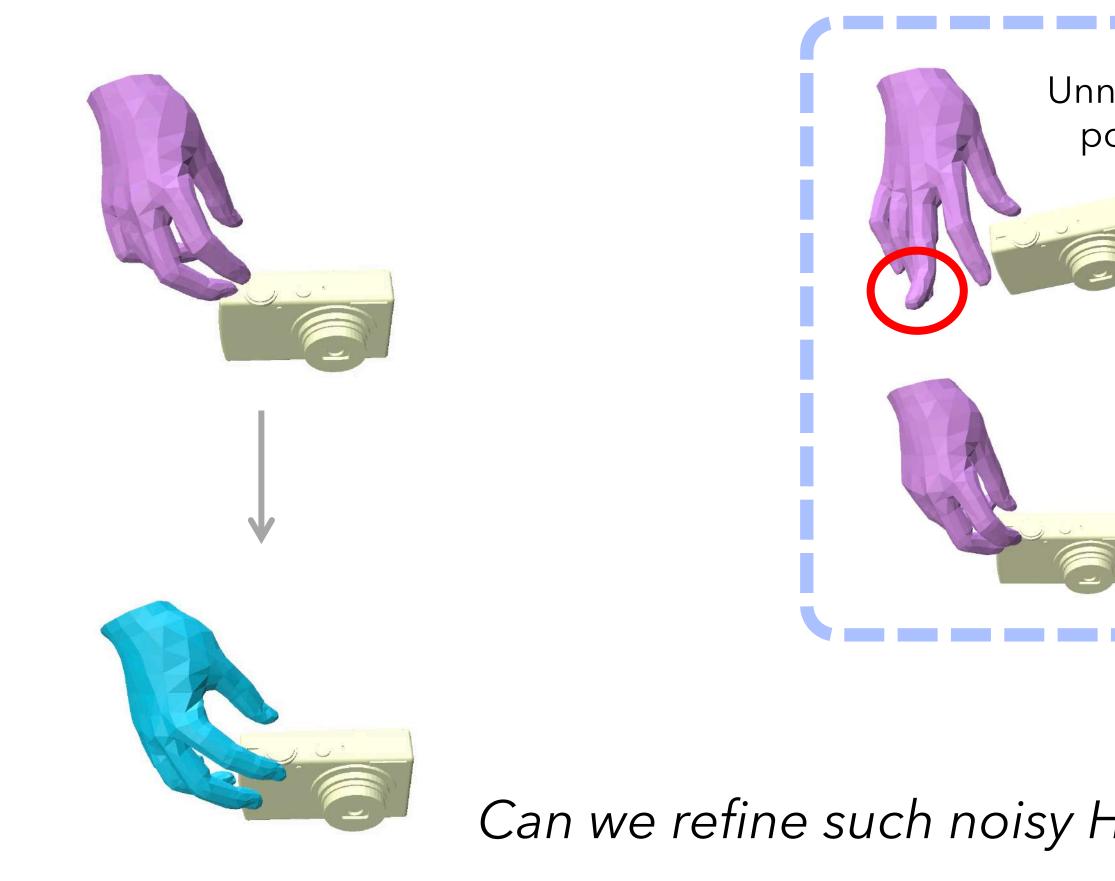
HOI4D, Liu et al. 2022

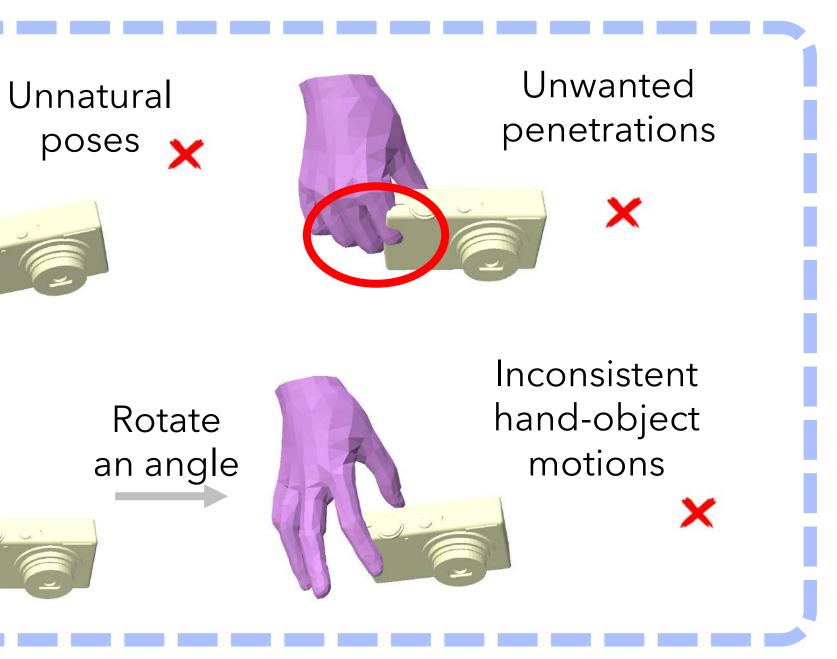
Synthesized result of proposed CAMS framework

CAMS: CAnonicalized Manipulation Spaces for Category-Level Functional Hand-Object Manipulation Synthesis Juntian Zheng*, Qingyuan Zheng*, Lixing Fang*, Yun Liu, Li Yi. CVPR 2023

HOI Synthesis and Denoising

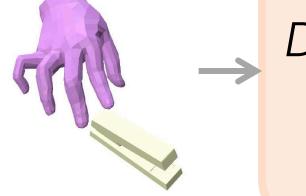
Synthesizing **high-quality HOI data** is challenging: Numerous factors can result in *heterogeneous* and *complex* interaction noise





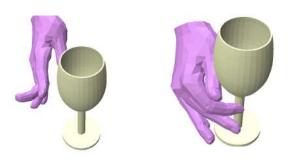
Can we refine such noisy HOI data for **clean interaction sequences**?

GeneOH Diffusion: Generalizable HOI Denoising

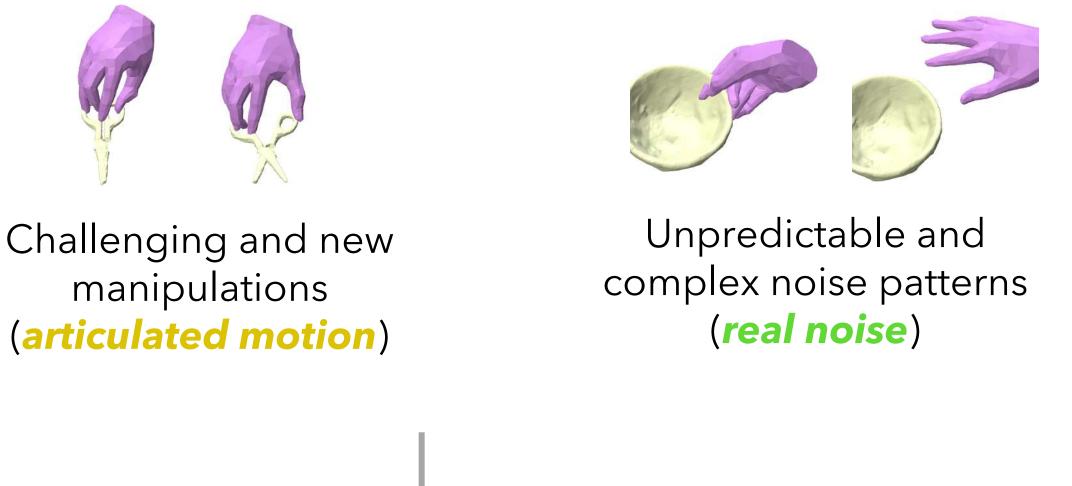


Data-Driven Denoising Model Trained on Paired Noisy-Clean Data

Noisy Data with Synthetic Gaussian Noise



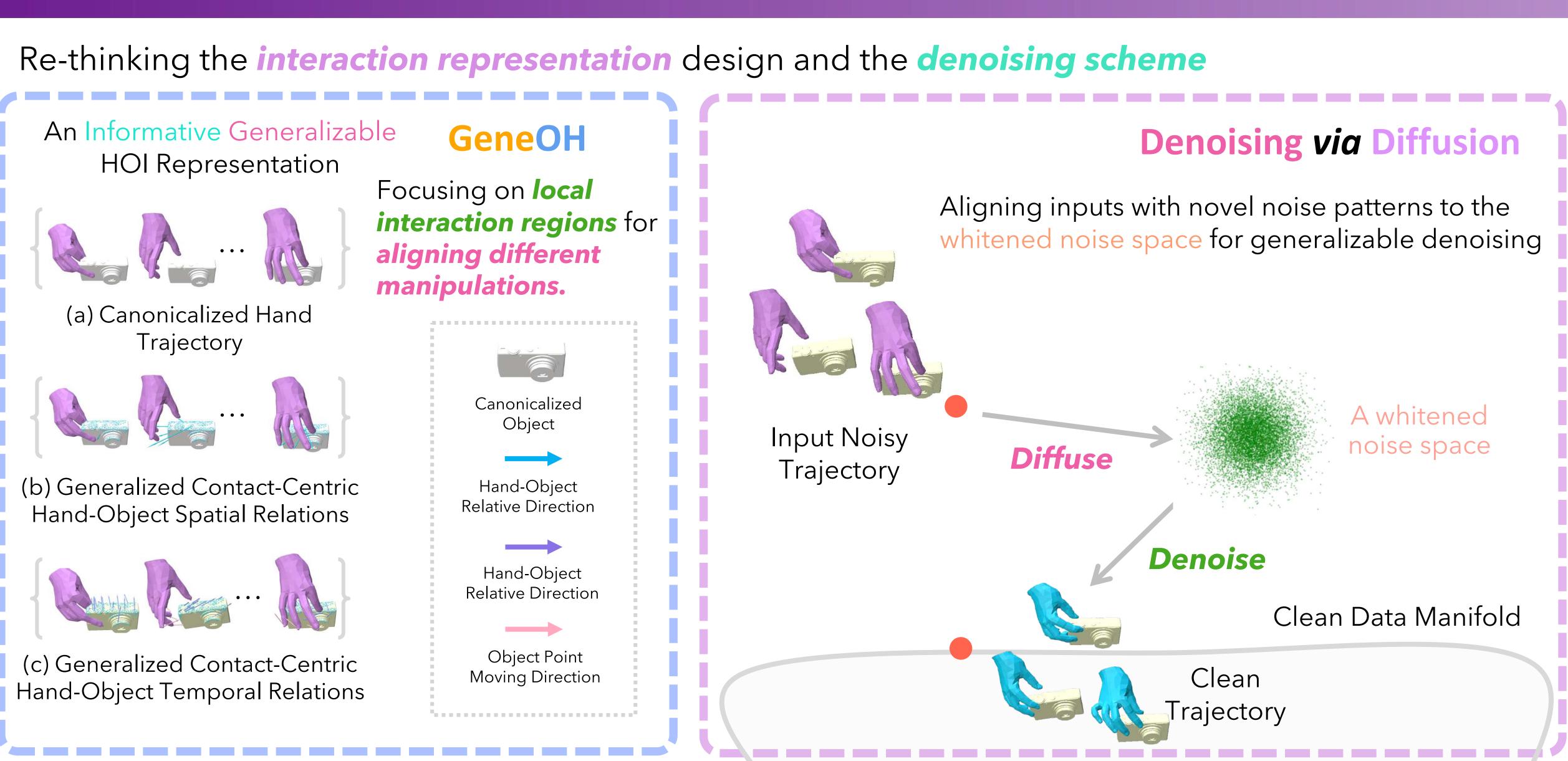
Unseen and difficult objects (thin shells)



GeneOH Diffusion: Generalizable Hand-Object Interaction Denoising via Denoising Diffusion Xueyi Liu, Li Yi. ICLR 2024

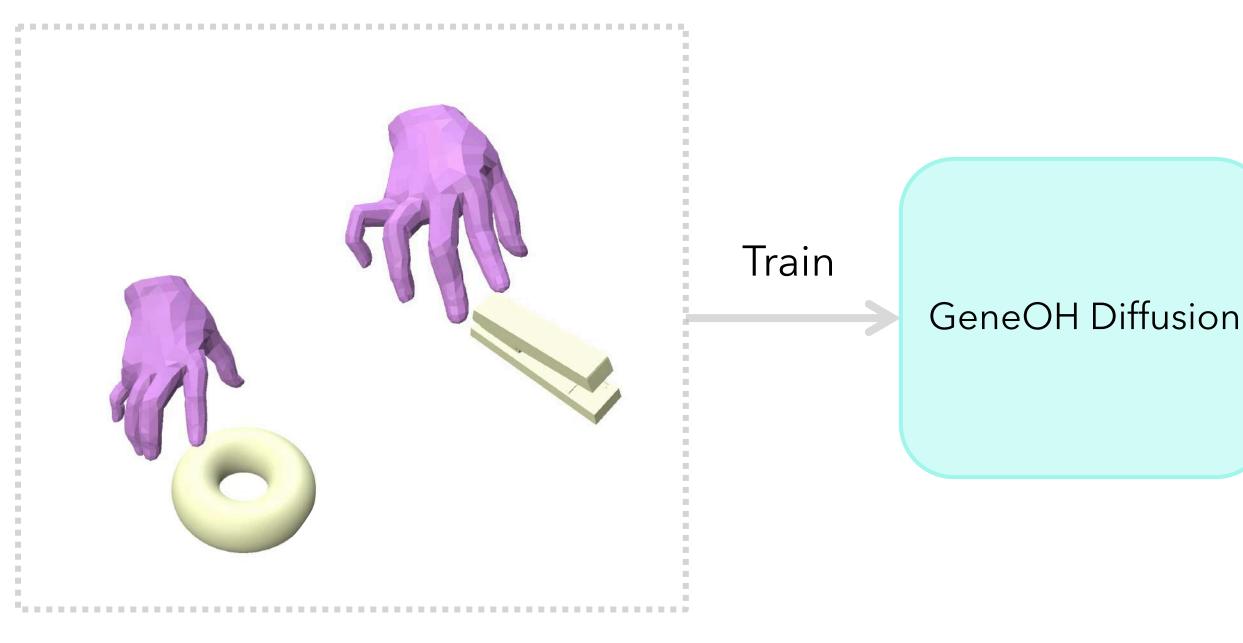
Clean Data

Key Idea: GeneOH and Denoising via Diffusion



Generalizable HOI Denoising

GRAB Training Set



noise ~ a Gaussian Distribution

Out-of-Distribution Test Scenarios

GRAB Test Set

Unseen Objects Novel Interactions

GRAB (Beta) Test Set

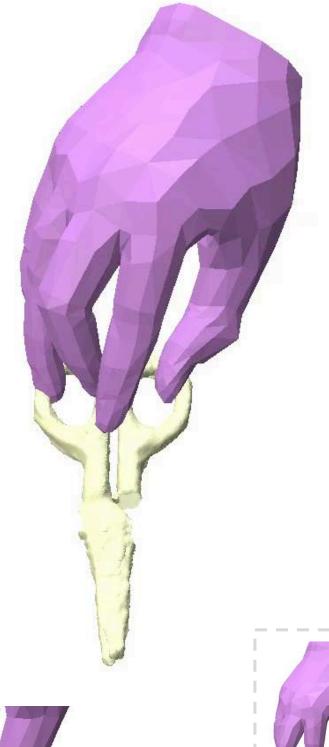
Generalize

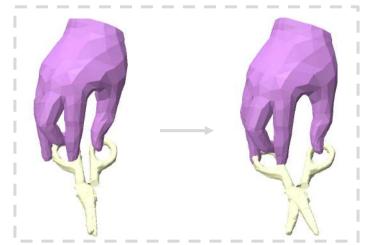
Unseen Objects Novel Interactions Novel noise ~ a Beta Distribution

HOI4D Dataset

Unseen Objects Novel Interactions Novel noise from real noisy datasets

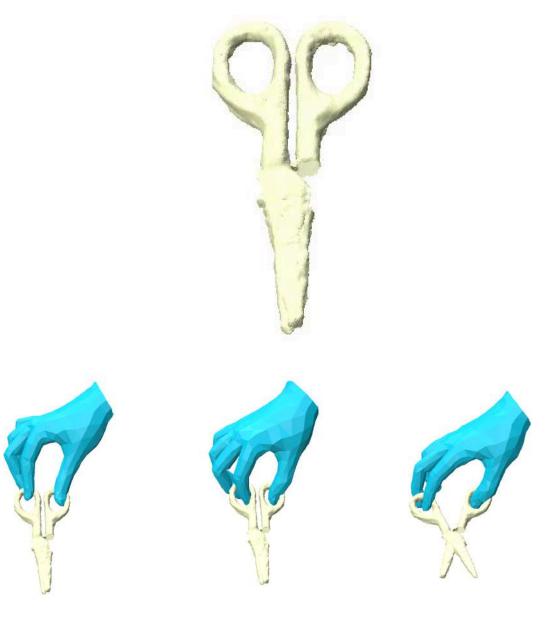
Generalizable HOI Denoising





Challenging Geometry (Rings) Articulation Variation Novel and Difficult Real Noise Patterns

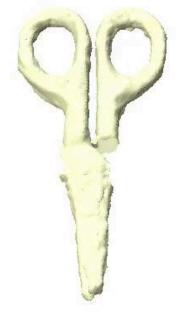
Ours



Generalizable HOI Denoising



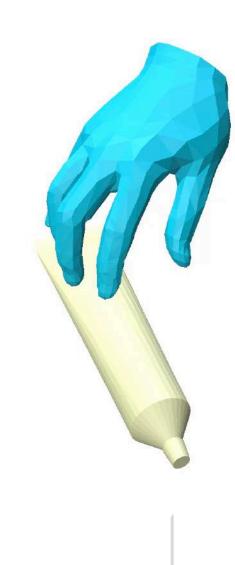
1. Challenging Geometry (Rings) 2. Articulation Variation 3. Novel and Difficult Real Noise Patterns



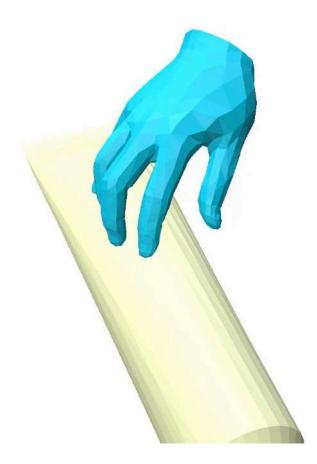
TOCH

Applications: Refining Retargeted Motions

Source Motion

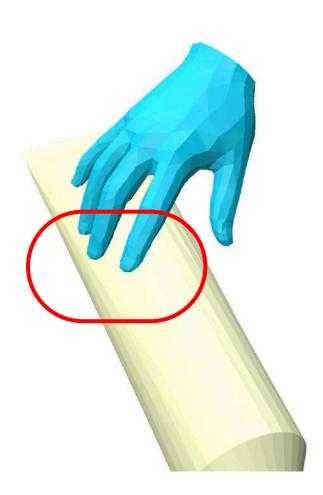


Scale the object up by 2x w/o Denoising

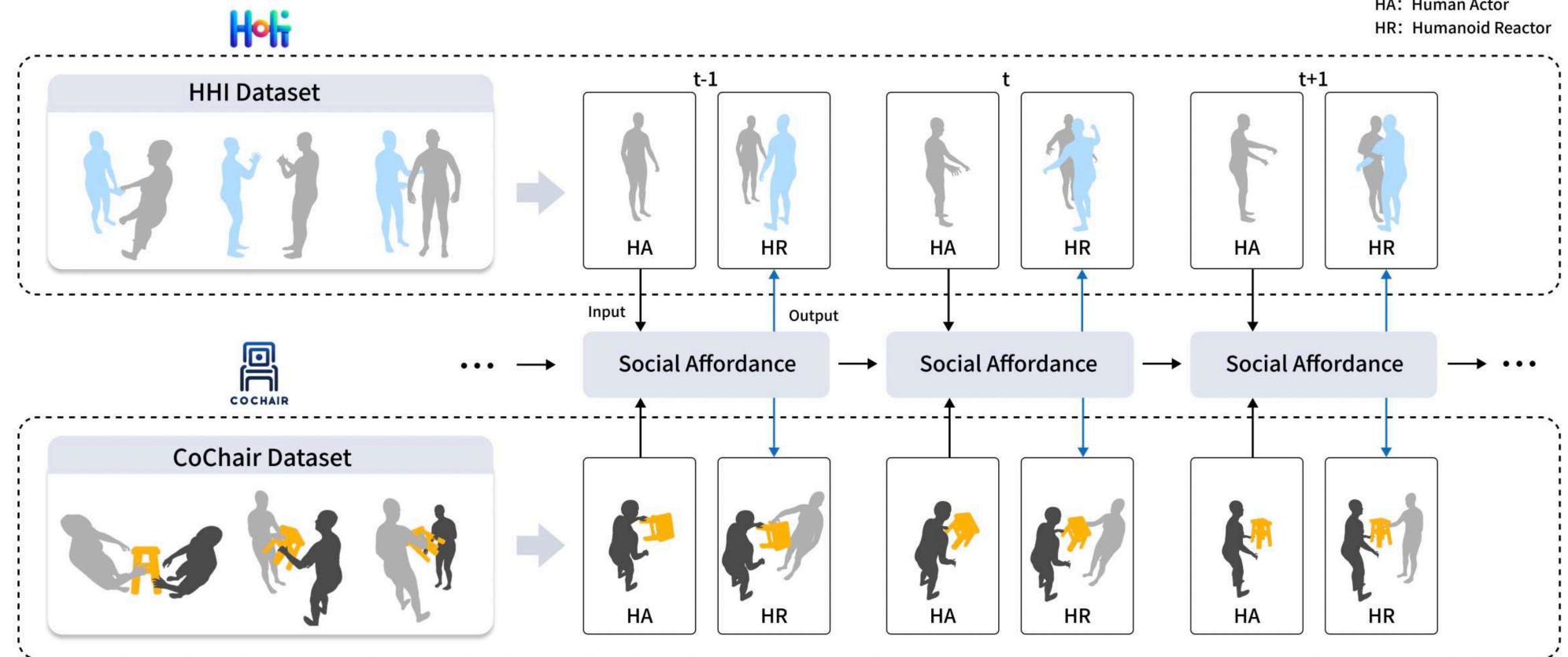


Ours

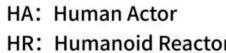
TOCH



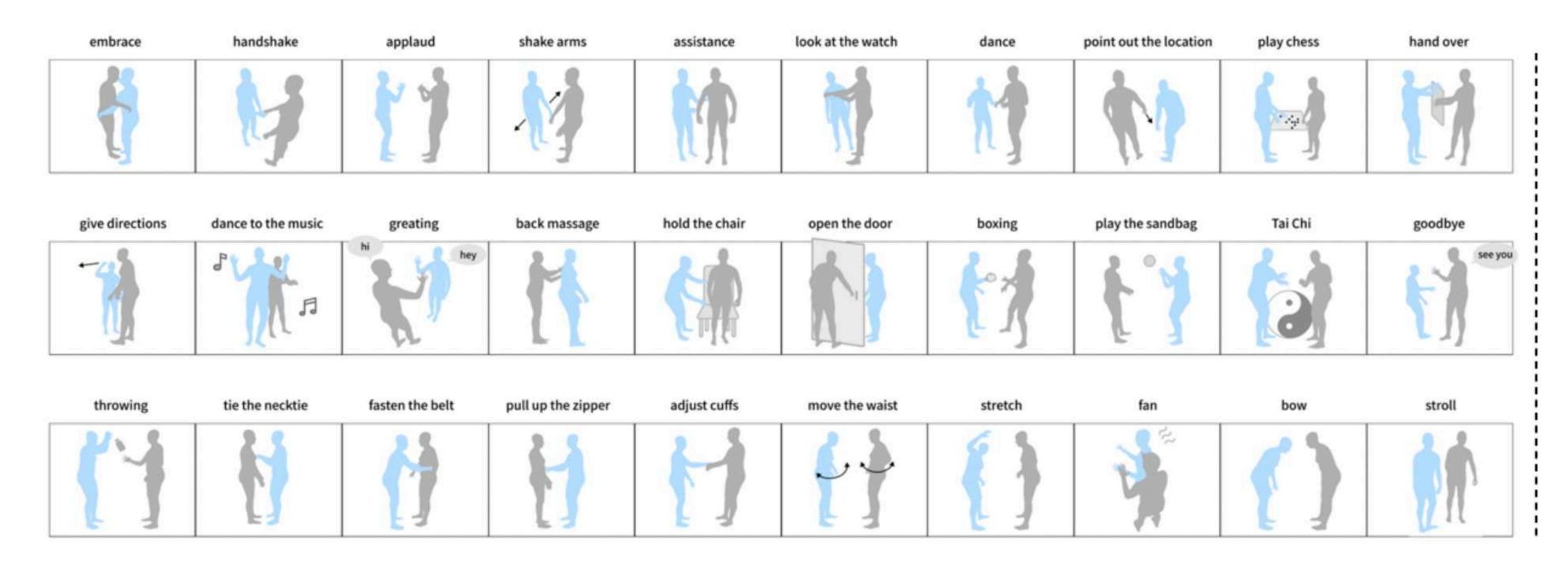
Online Full-Body Motion Reaction Synthesis



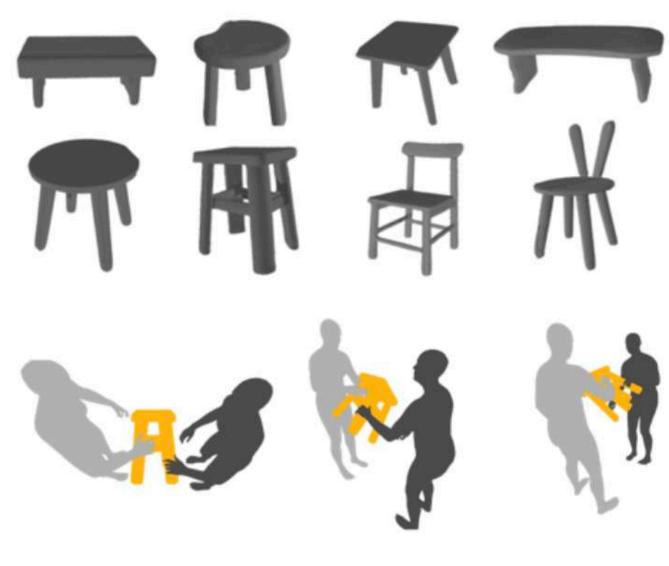
Interactive Humanoid: Online Full-Body Motion Reaction Synthesis with Social Affordance Canonicalization and Forecasting Yunze Liu, Changxi Chen, Li Yi. In submission



Dataset Statistics

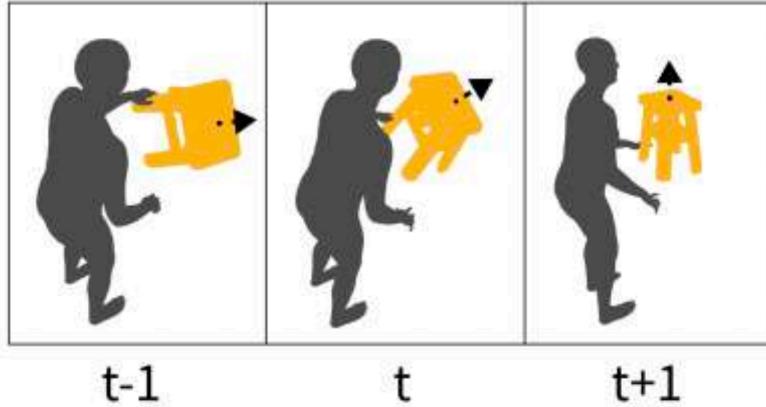


Dataset	Object	Full-body	Actor&Reactor	Mocap	Motions	Verbs	Duration
SBU[53]	<u> </u>	- <u></u>	-	<u></u>	282	8	0.16h
K3HI[5]	-		-	-	312	8	0.21h
NTU120[31])		-		739	26	0.47h
You2me[37]		-	-		42	4	1.4h
Chi3D[17]		-		×	373	8	0.41h
InterHuman[30]	 6	1 977 (\checkmark	6022	5656	6.56h
HHI (Ours)	<u></u> -7	\checkmark	\checkmark	\checkmark	5000	30	5.55h
CoChair (Ours)	\checkmark	\checkmark	\checkmark	\checkmark	3000	5	2.78h



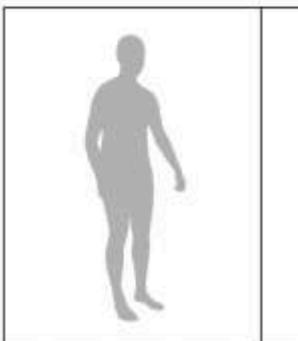
Social Affordance

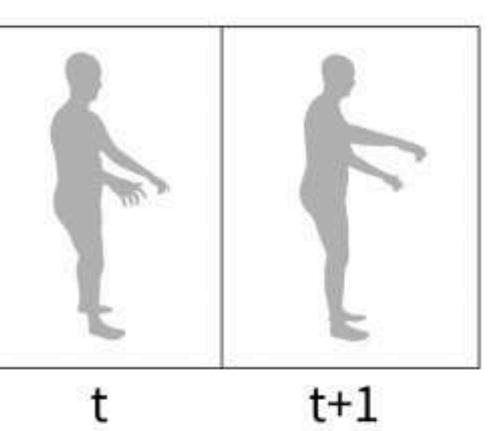
Input



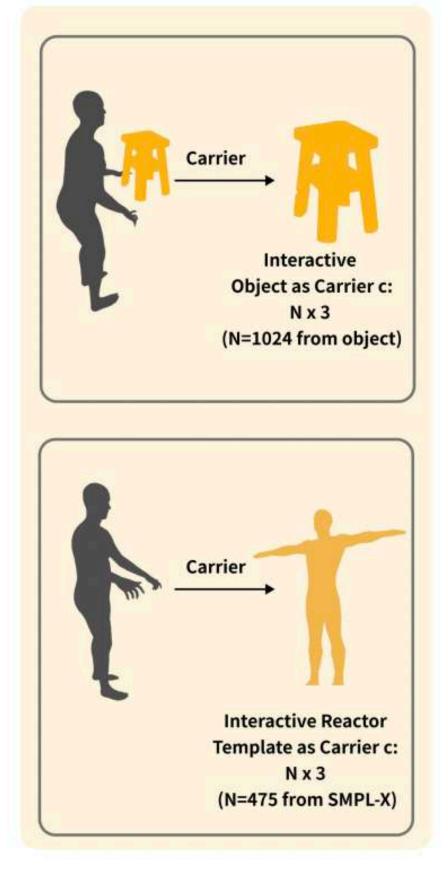
t-1

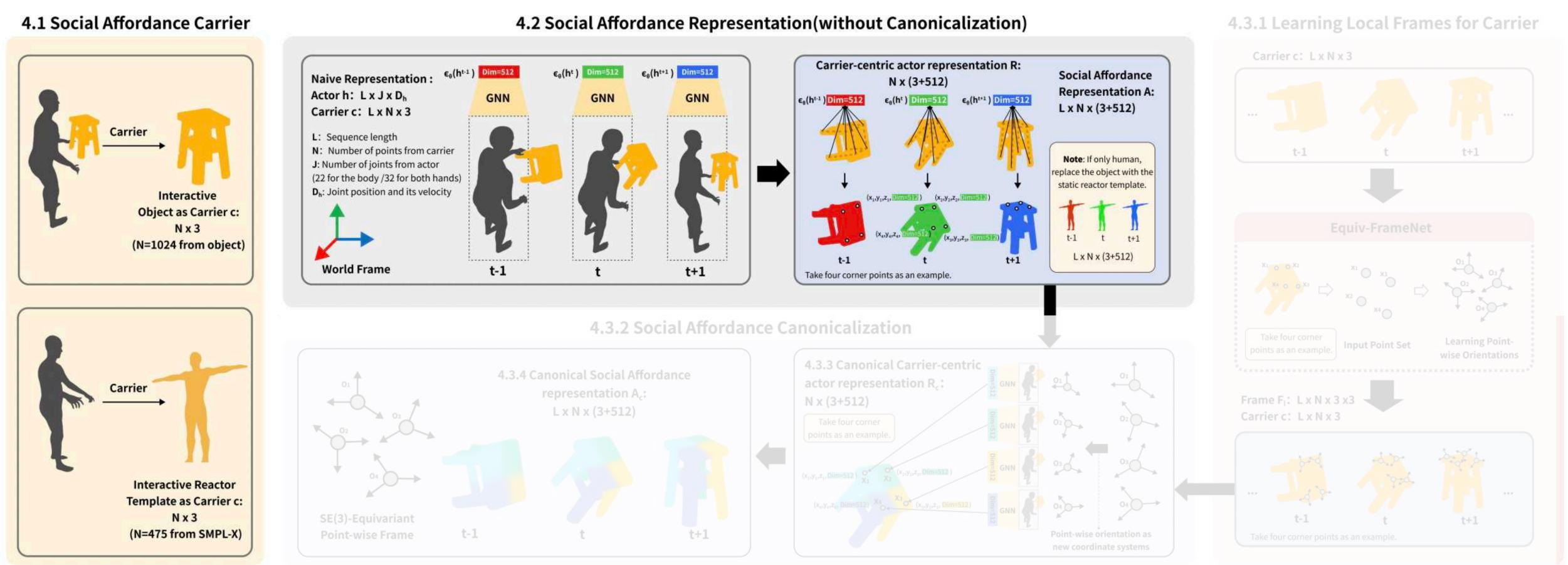
Input



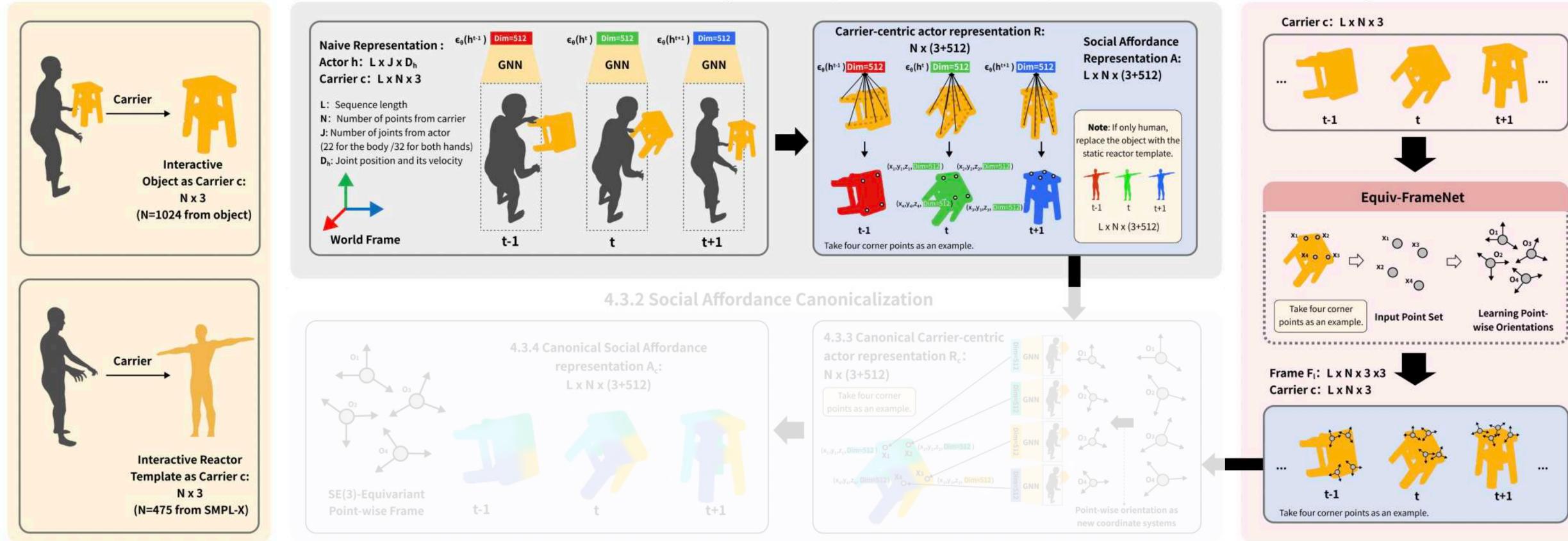


4.1 Social Affordance Carrier

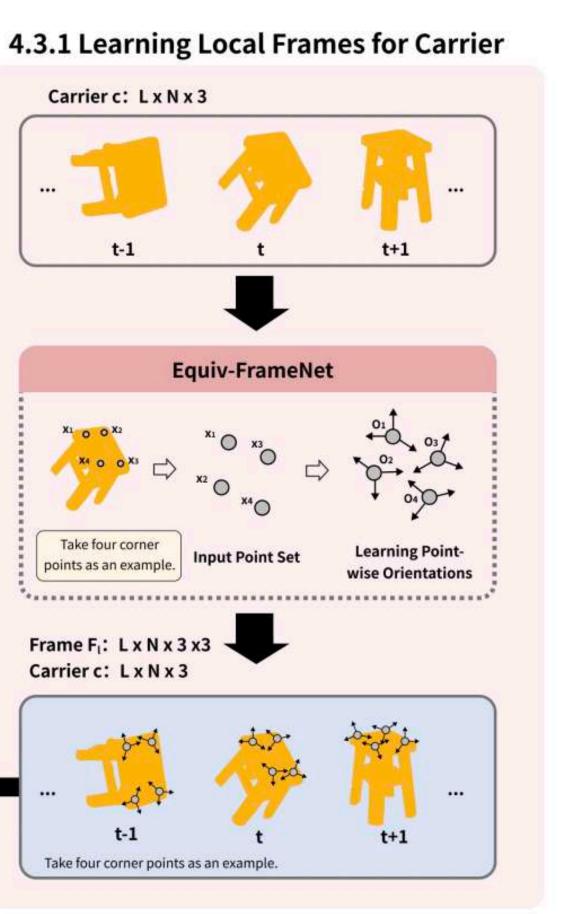


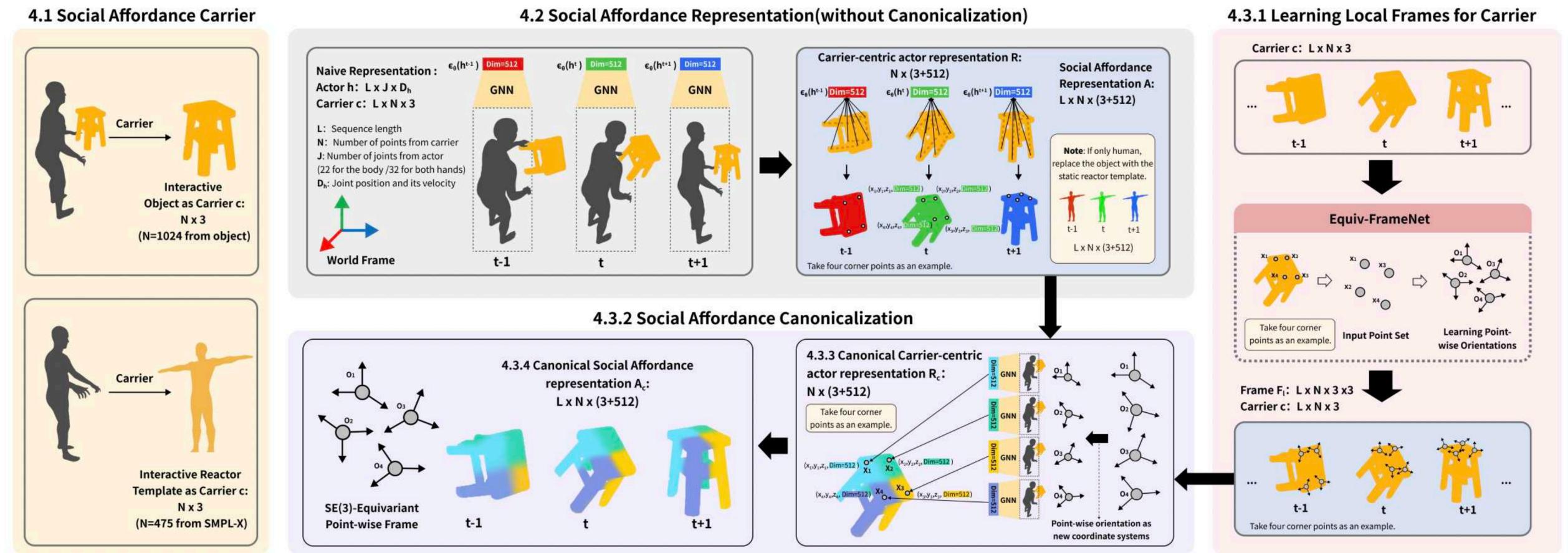


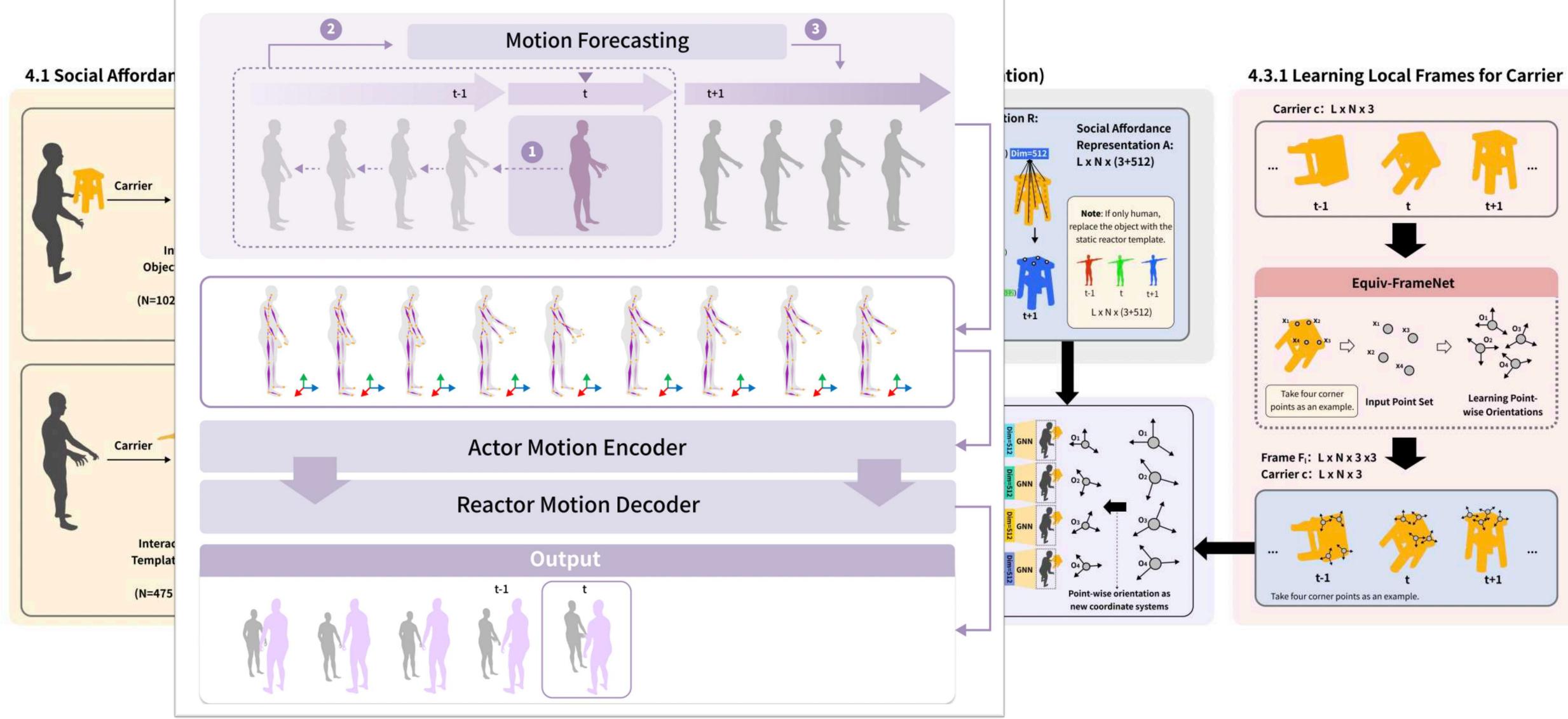
4.1 Social Affordance Carrier

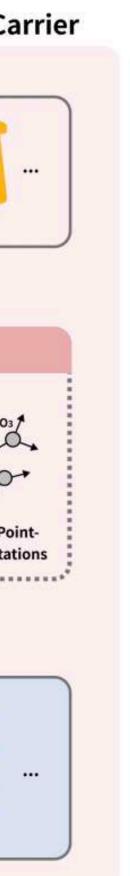


4.2 Social Affordance Representation(without Canonicalization)

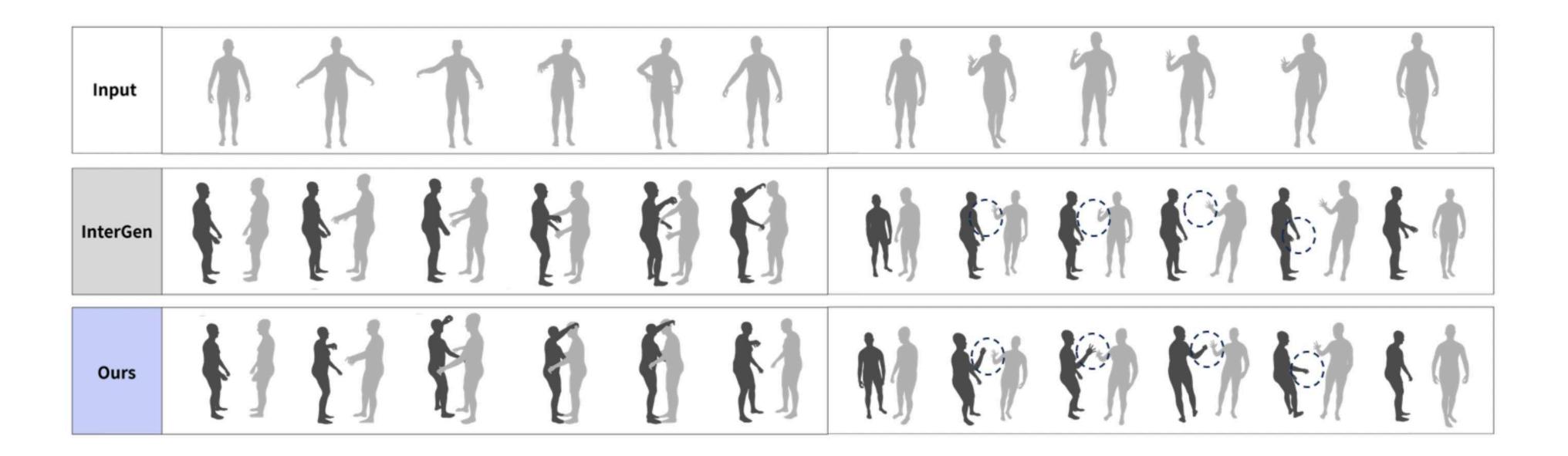




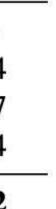




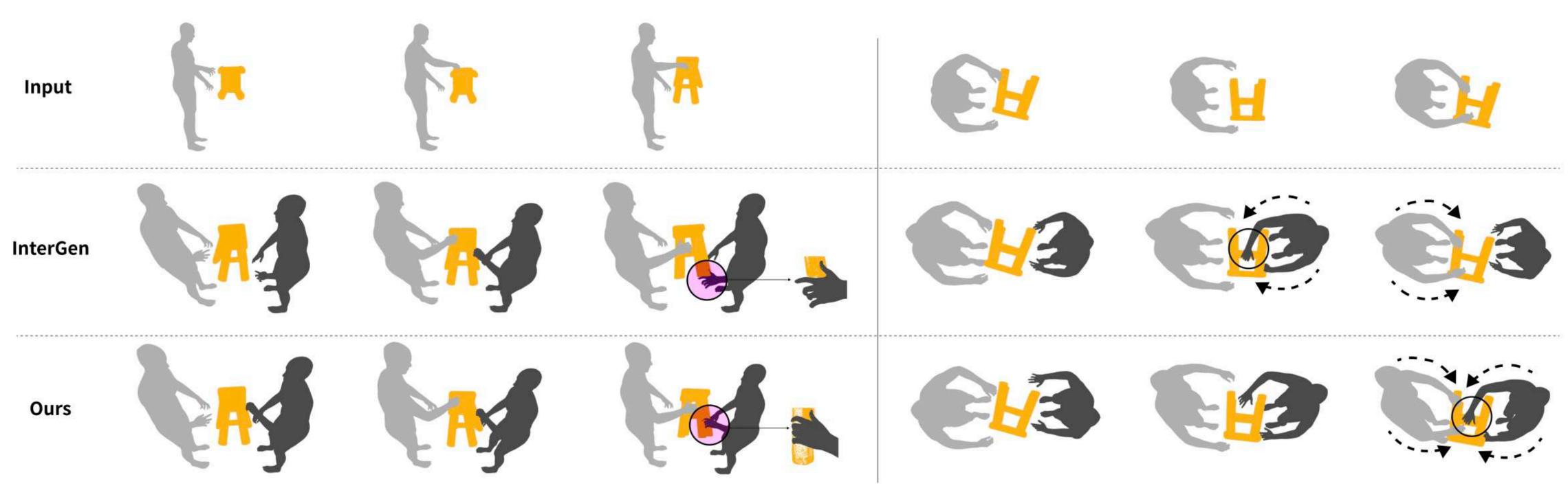
Experimental Results for Human-Human Interaction



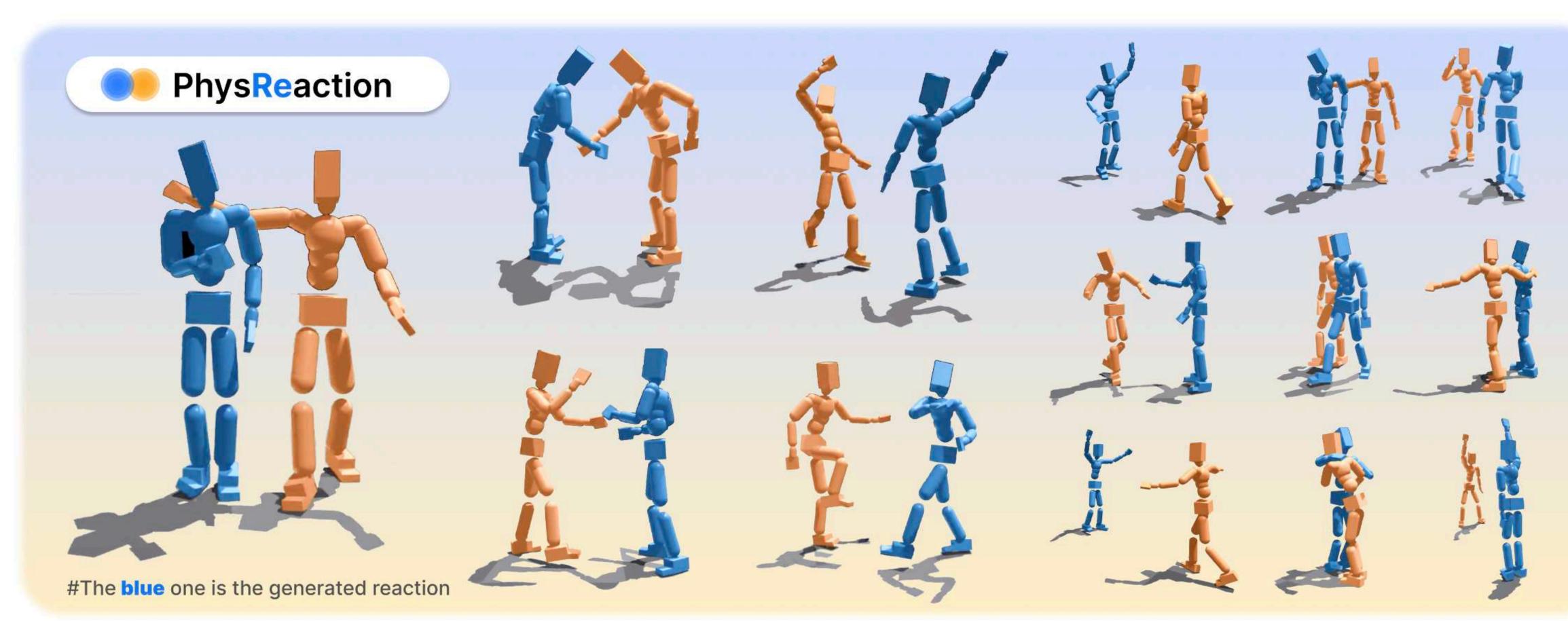
Method	FID↓			Diversity \rightarrow		Accuracy ↑			User Preference↑			
method	HHI	InterHuman[30]	Chi3D[17]	HHI	InterHuman[30]	Chi3D[17]	HHI	InterHuman	Chi3D[17]	HHI	InterHuman[30]	Chi3D[1
Real	0.21	0.17	0.05	10.8	12.4	14.0	88.2	. 	80.4	-		-775
PGBIG[33]	56.7	87.2	67.2	13.9	17.1	17.8	34.1		61.6	4.4	1.0	8.3
SS-Transformer[2]	77.8	107.3	54.9	16.2	18.5	19.2	51.9		57.1	2.7	4.6	18.4
InterFormer[12]	54.3	73.1	20.8	14.1	14.2	14.8	77.9	-	62.2	6.0	2.1	13.7
InterGen-Revised[30]	19.8	25.7	17.7	11.6	13.3	14.2	80.2	-	71.9	19.7	41.7	15.4
Ours	13.3	14.7	12.8	11.1	13.3	14.1	85.4	-	77.6	67.2	50.6	44.2



Experimental Results for HOH Interaction

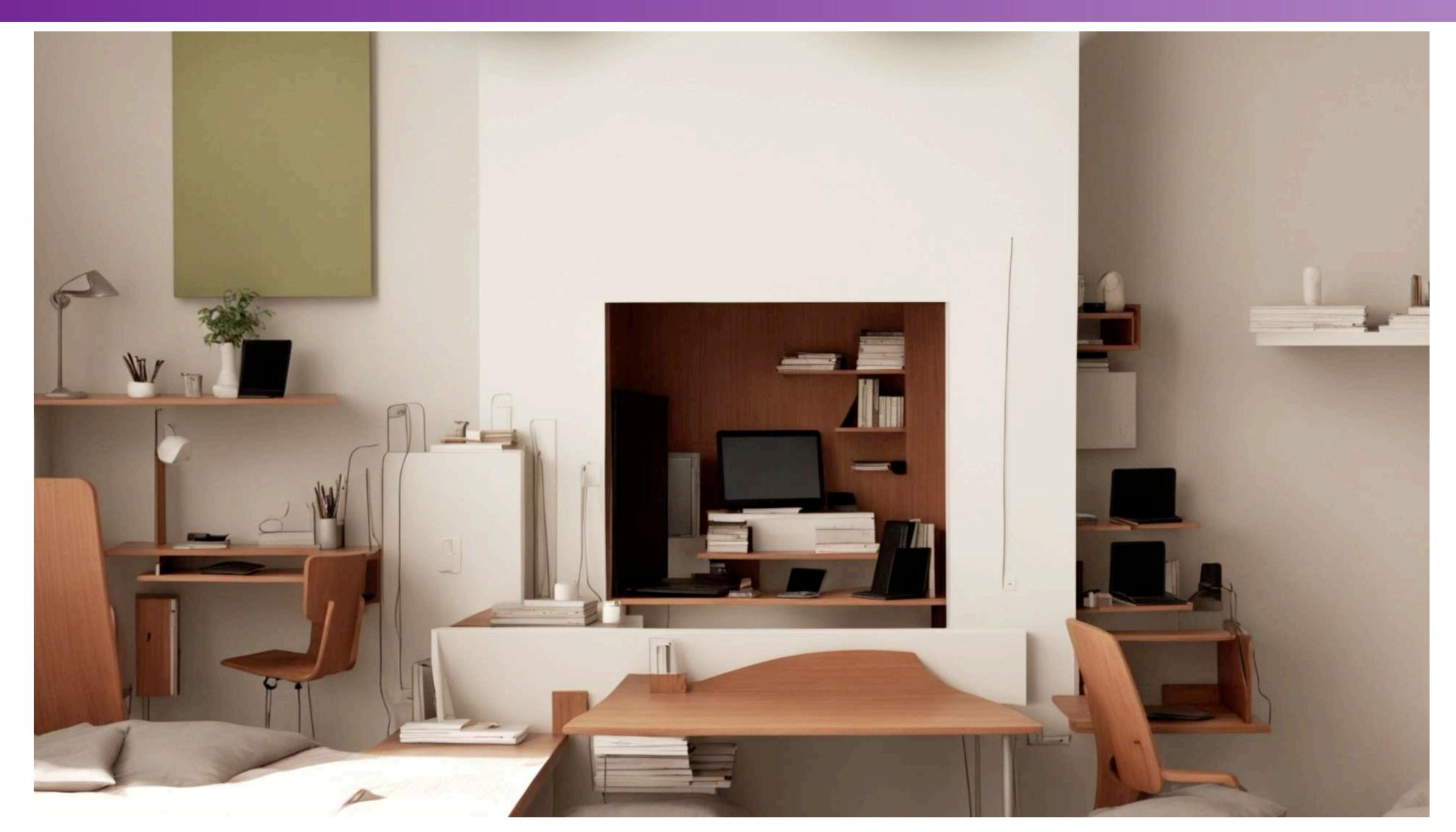


Physically Plausible Reaction Synthesis



PhysReaction: Physically Plausible Real-Time Humanoid Reaction Synthesis via Forward Dynamics Guided 4D Imitation Yunze Liu, Changxi Chen, Chenjing Ding, Li Yi. In submission

Embodied Digital Agent



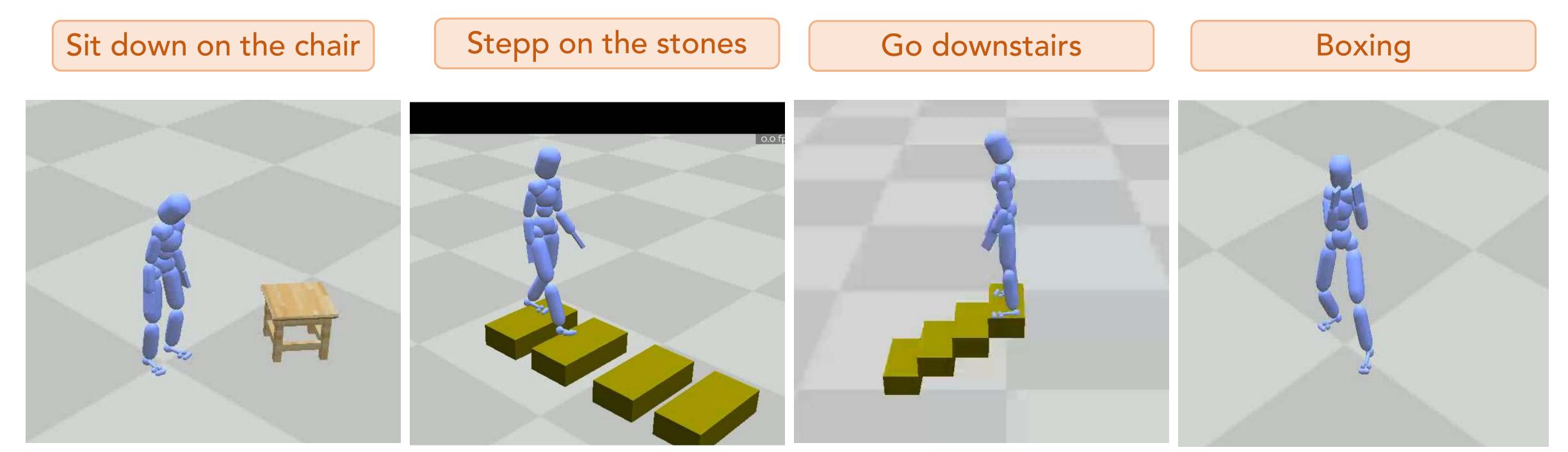
Interactive Humanoid: Online Full-Body Motion Reaction Synthesis with Social Affordance Canonicalization and Forecasting Yunze Liu, Changxi Chen, Li Yi. In submission

Can We Get Rid of MoCap?

FreeMotion: Mocap-Free Human Motion Synthesis with Multimodal Large Language Models Zhikai Zhang, Yitang Li, Haofeng Huang, Mingxian Lin, Li Yi. In submission.

Problem Setup

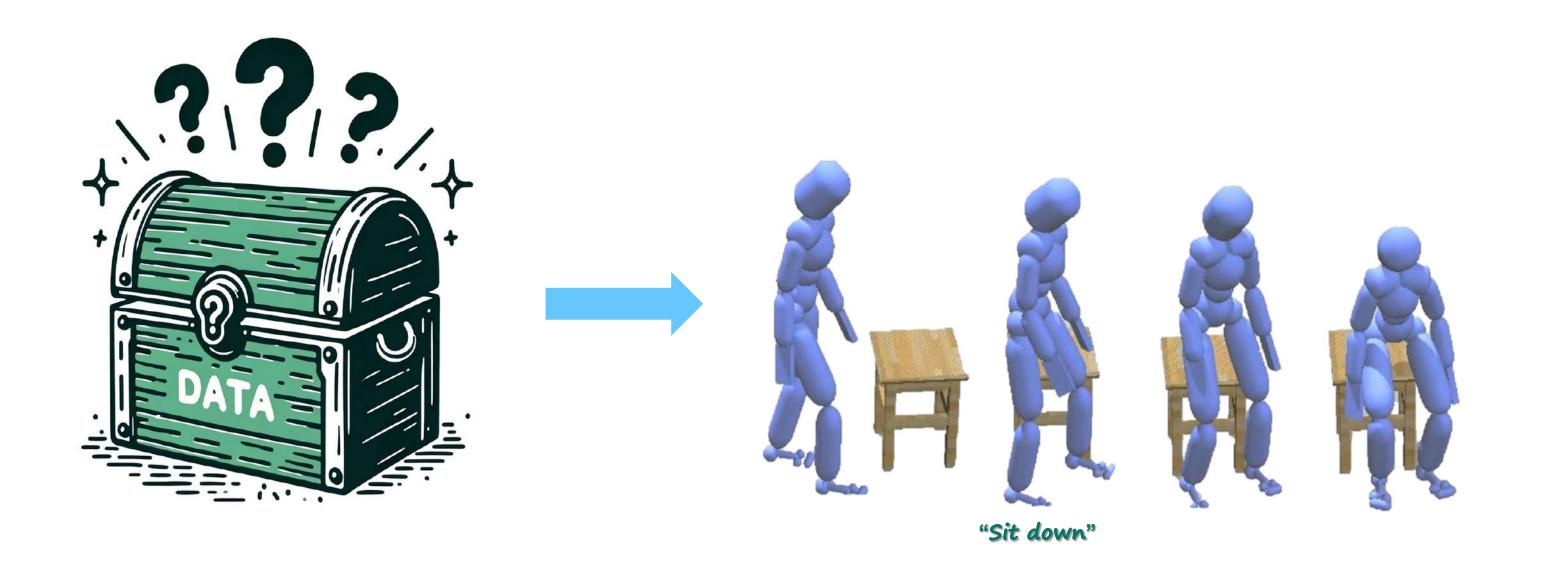
Sit down on the chair



Generate human-like physical humanoid motions in novel environments given arbitrary text prompts without any human-motion training data

Existing Paradigms

- Data-driven text-based motion synthesis
 - motion styles constrained by the training data



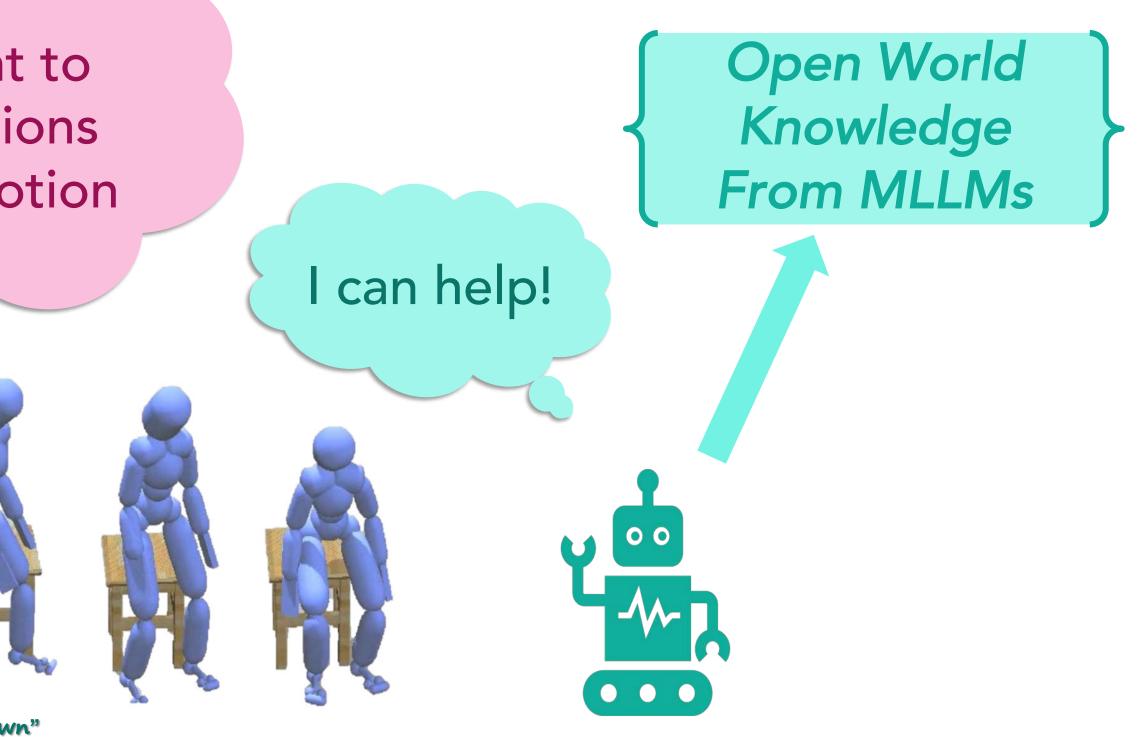
Very limited motion categories in specific environments with restricted

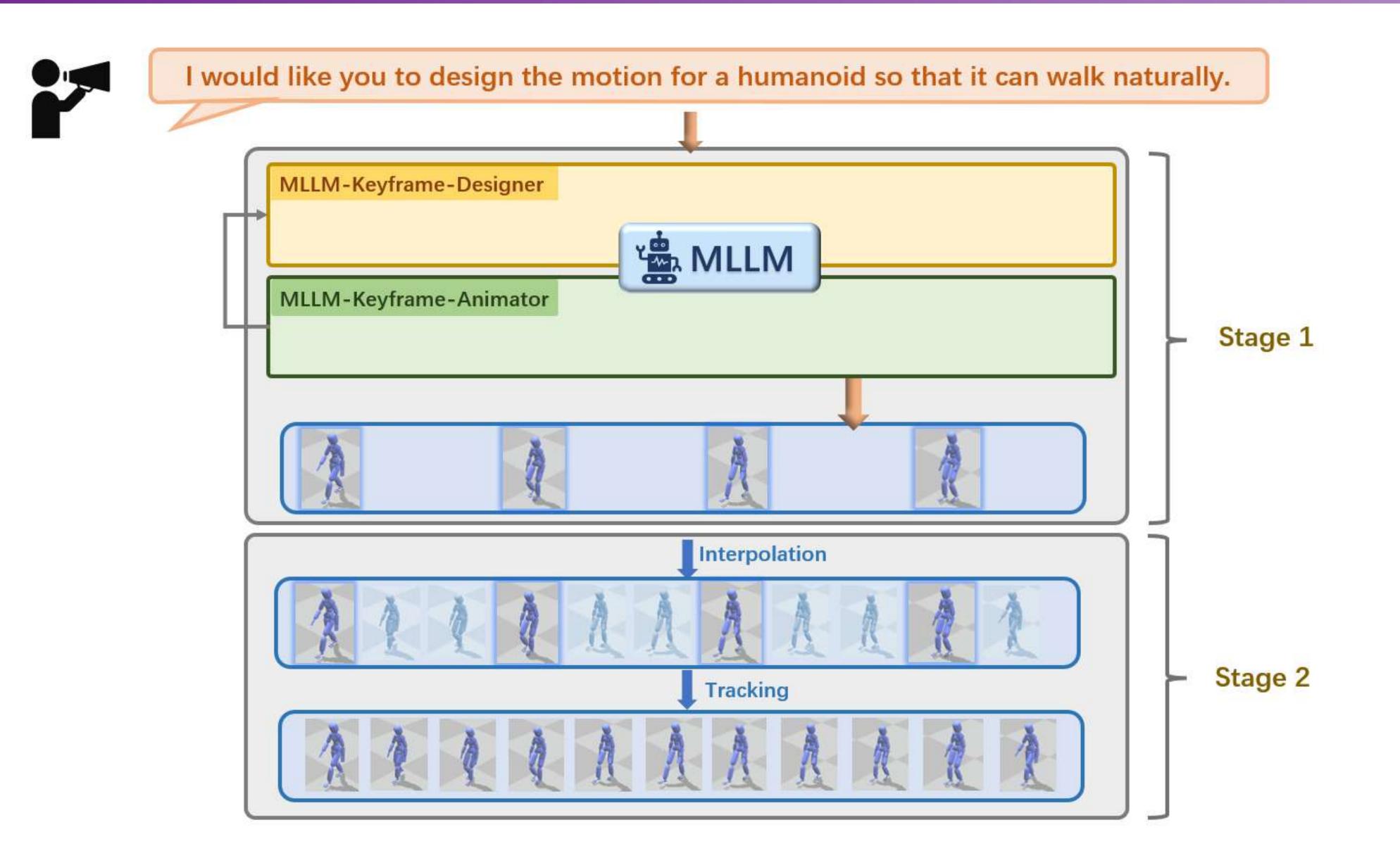
Our Paradigm

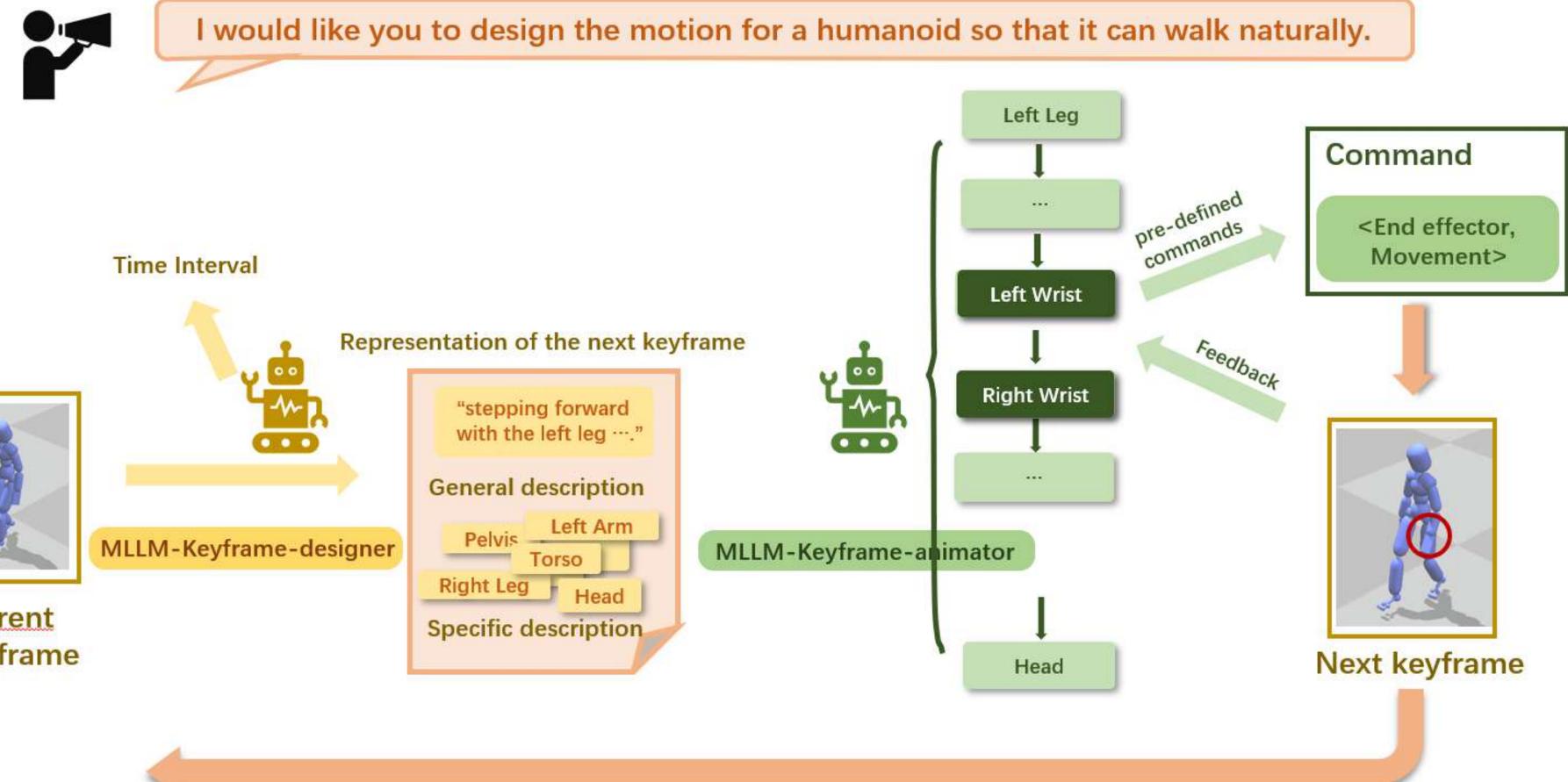
• Knowledge-driven text-based motion synthesis

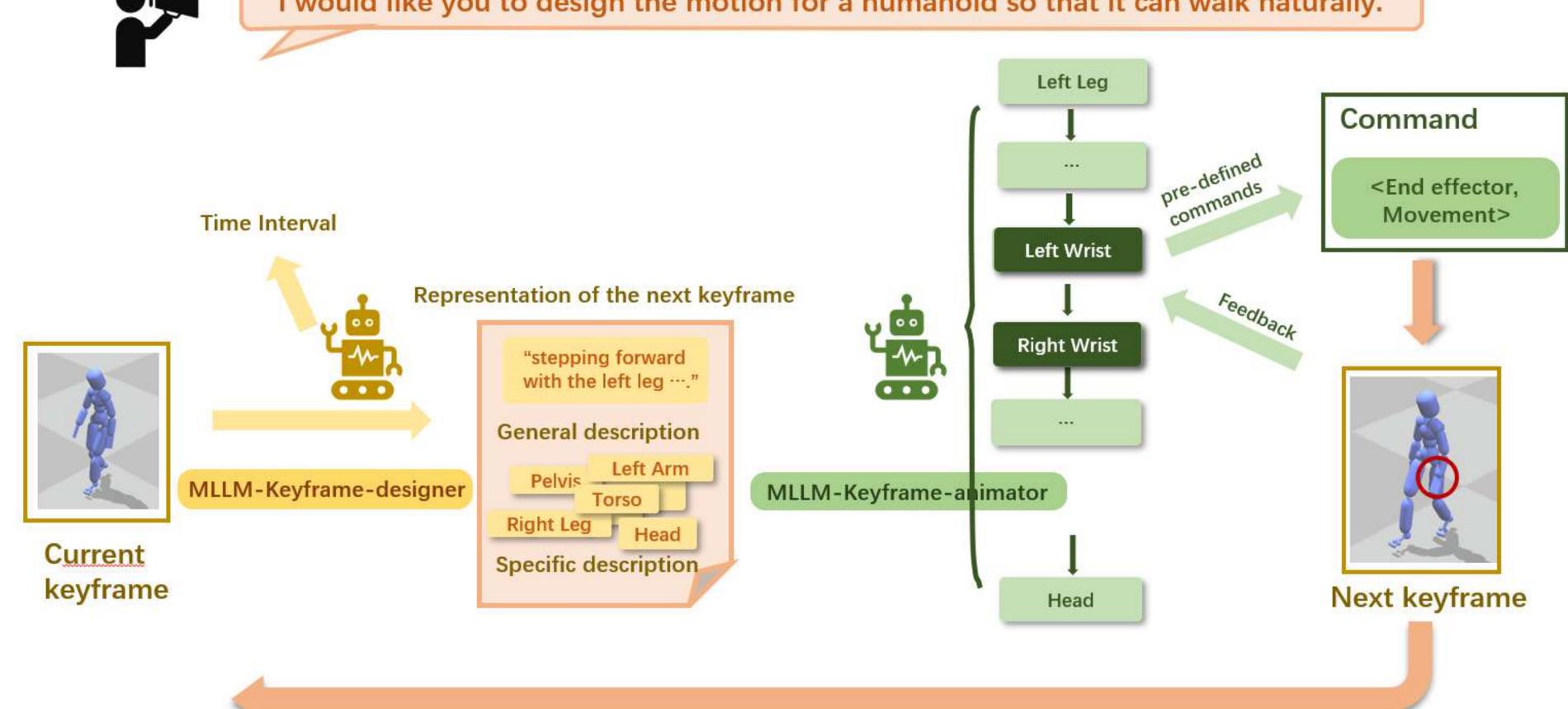
"Oops, I want to generate motions without any motion data !!!" A H H DATA "Sit down"

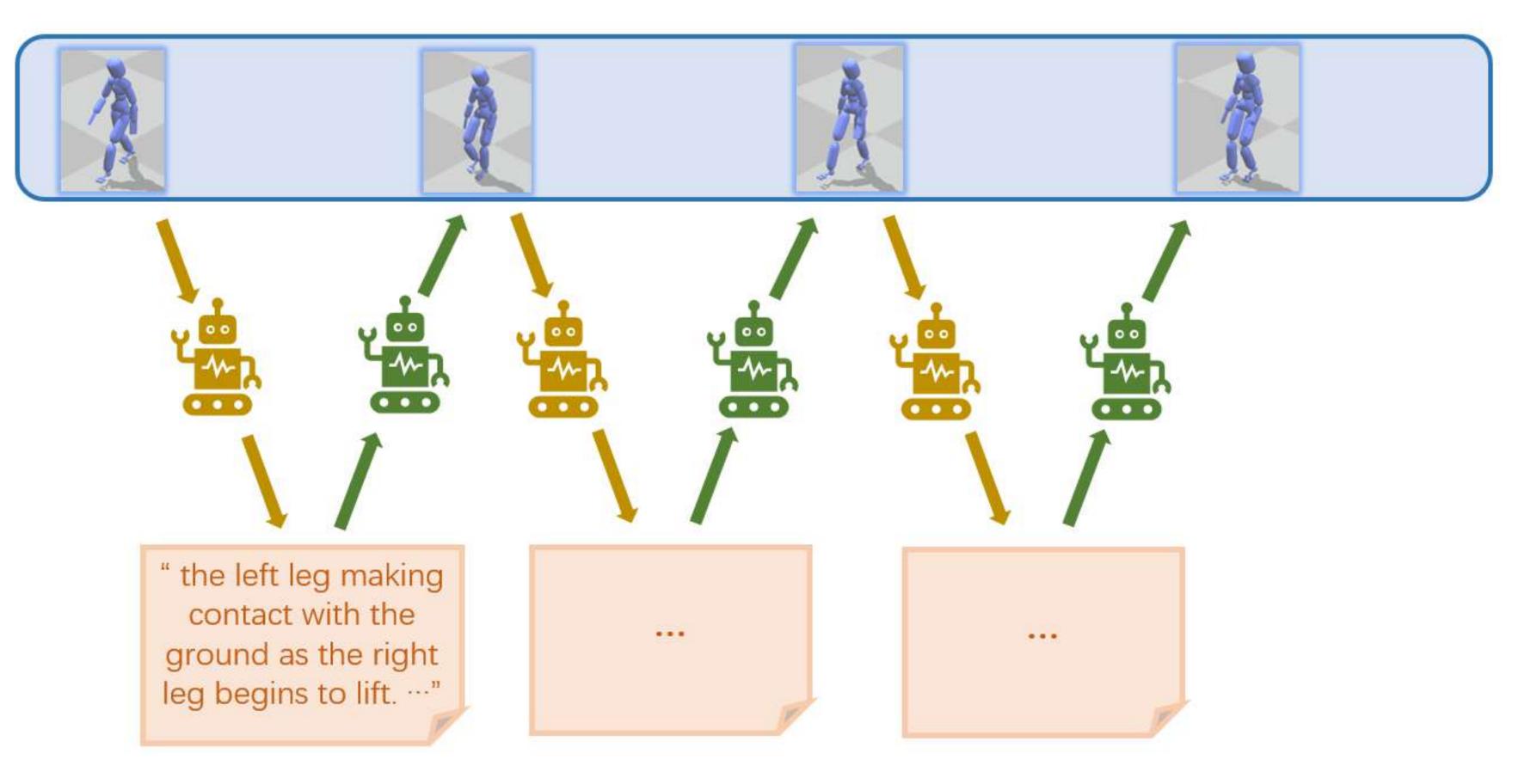
Any motion categories in any environments with any motion styles



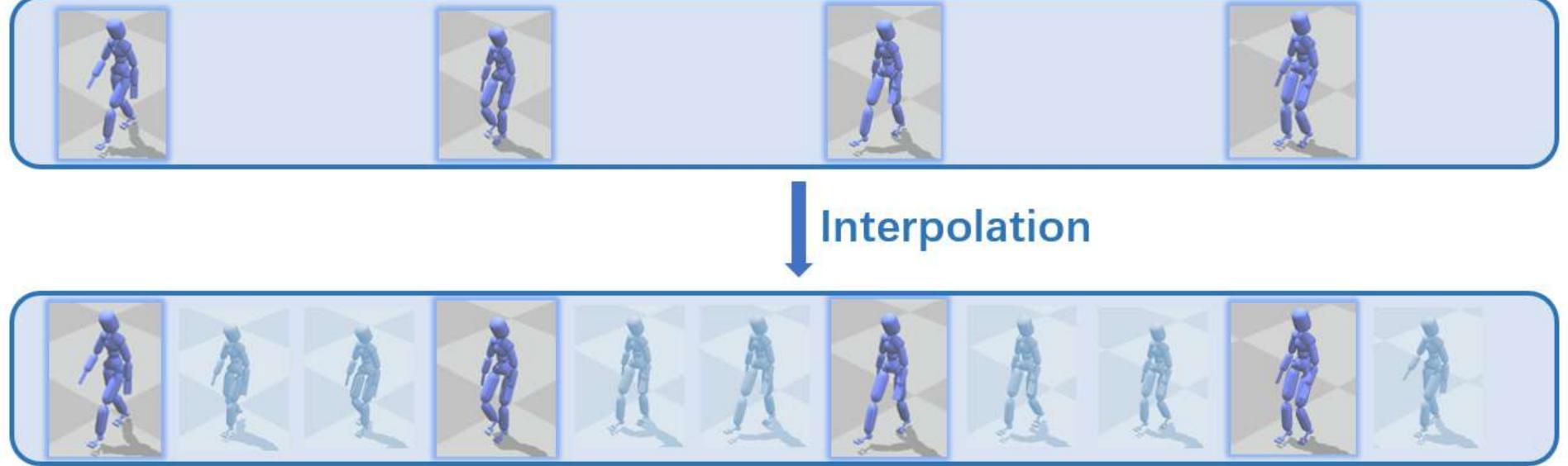




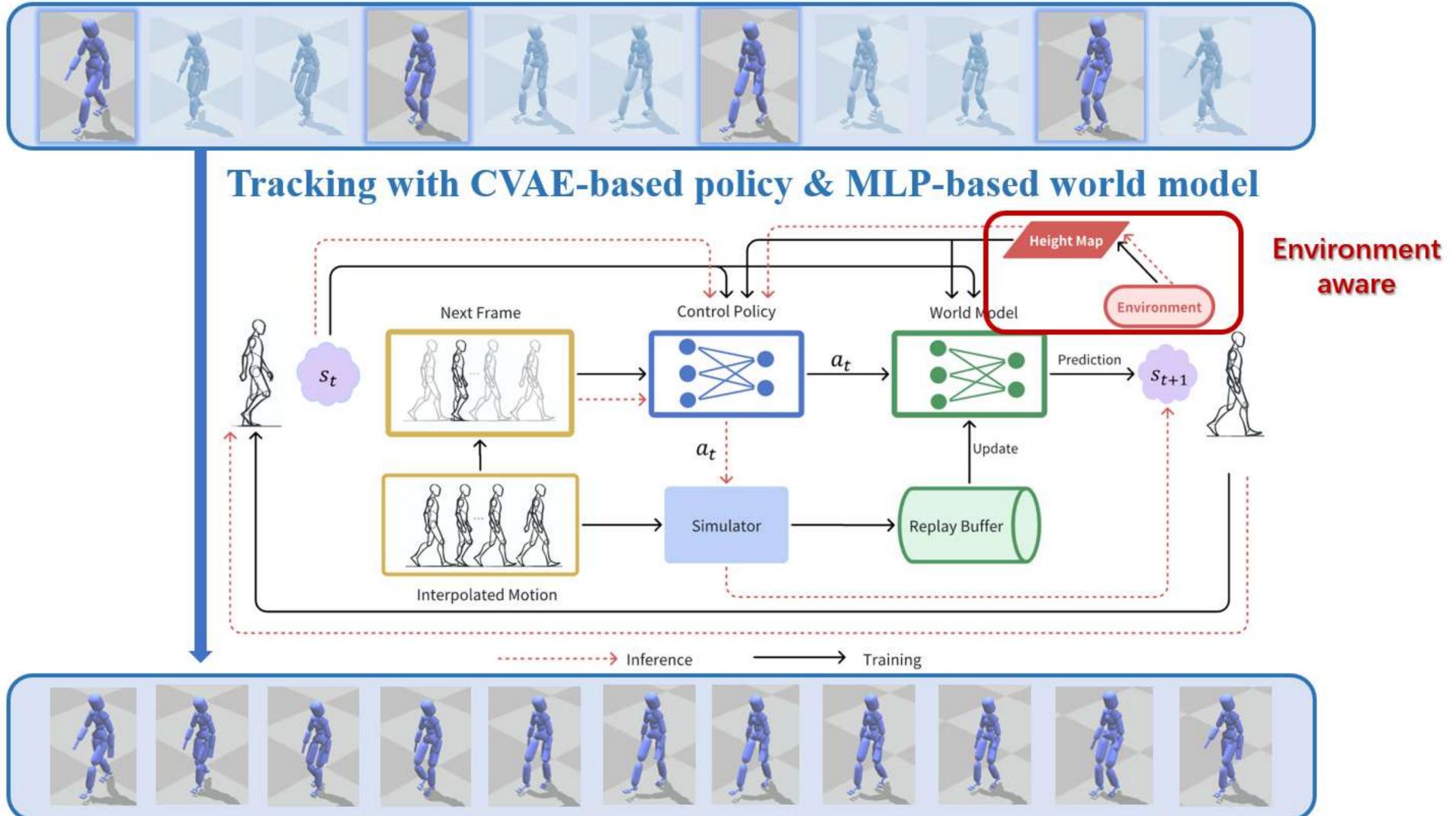


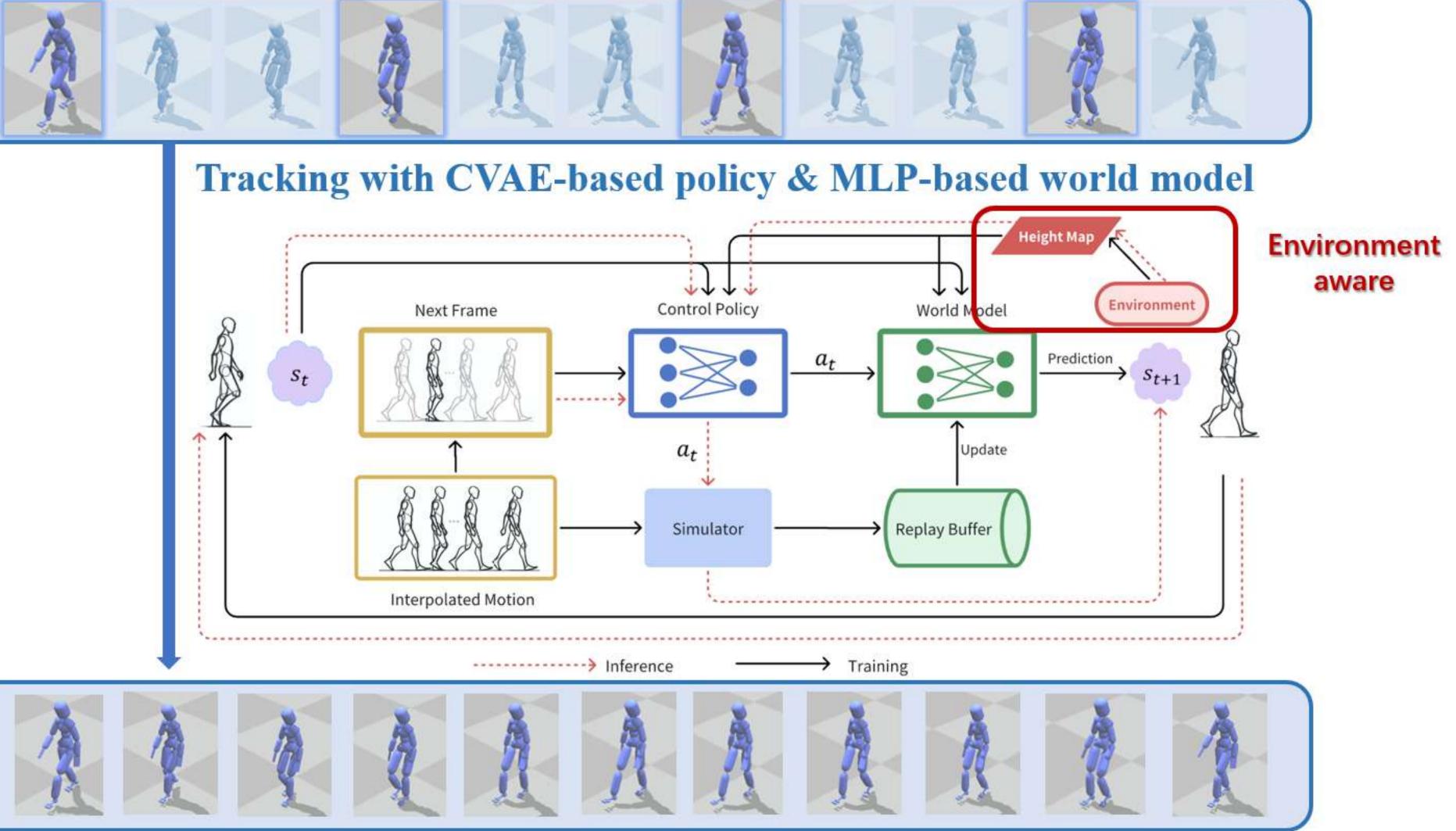


I would like you to design the motion for a humanoid so that it can walk naturally.



I would like you to design the motion for a humanoid so that it can walk naturally.





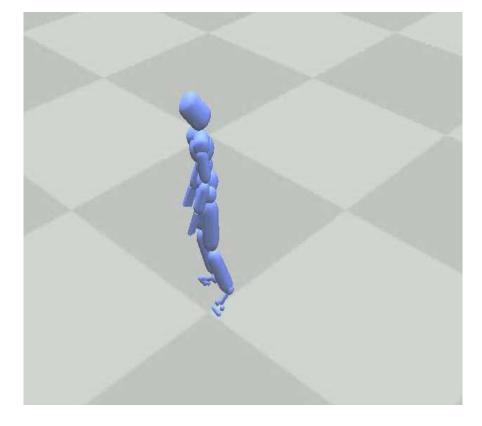
Results: HumanAct12

Table 2: Motion Synthesis on Hu-
manAct12. FreeMotion achieves good re-
sults without motion data.

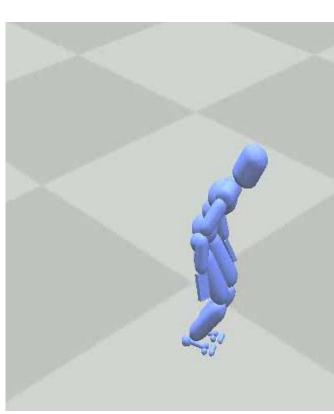
	User Study				
	MDM [37]	MLD [6]	Ours		
Warm up	26.00%	38.00%	36.00%		
Walk	10.00%	22.00%	68.00%		
Run	30.00%	32.00%	38.00%		
Jump	16.00%	28.00%	56.00%		
Drink	14.00%	46.00%	40.00%		
Lift dumbbell	26.00%	32.00%	42.00%		
Sit	30.00%	44.00%	26.00%		
Eat	22.00%	30.00%	48.00%		
Turn steering wheel	32.00%	28.00%	40.00%		
Phone	30.00%	32.00%	38.00%		
Boxing	16.00%	24.00%	60.00%		
Throw	20.00%	14.00%	66.00%		
Average	22.67%	30.83%	46.50%		

Walk

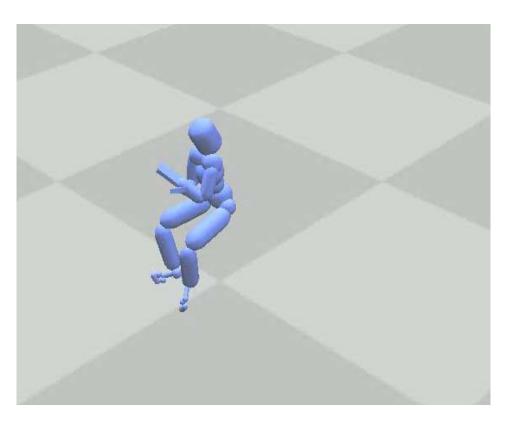
Jump

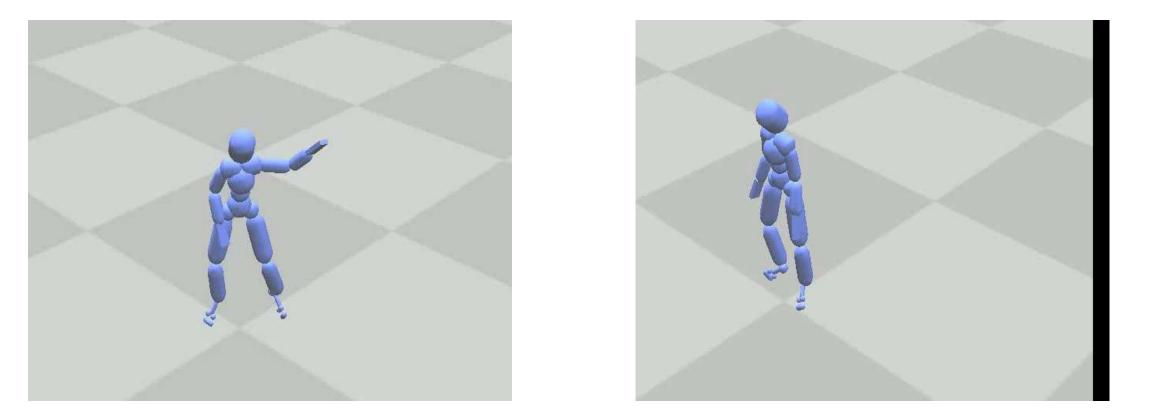


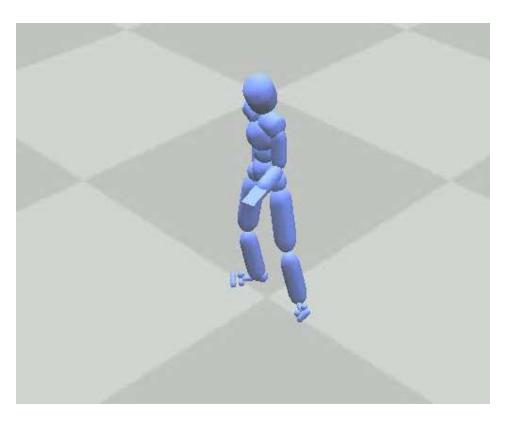
Ours

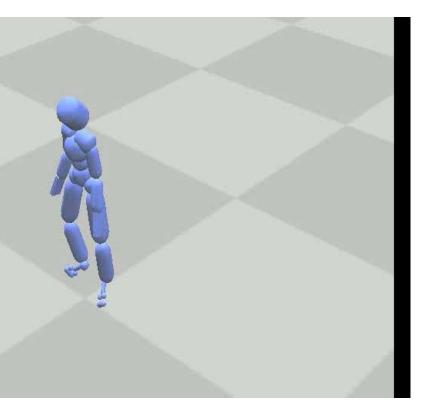


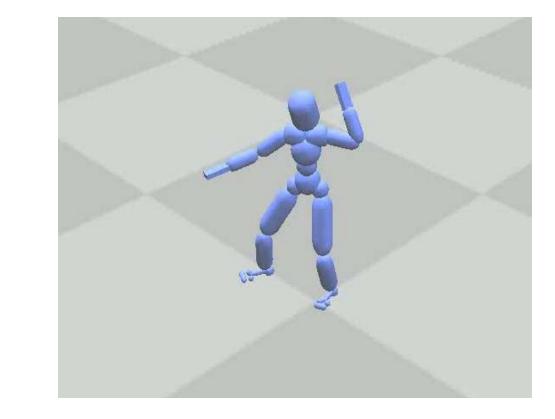
Results: HumanAct12









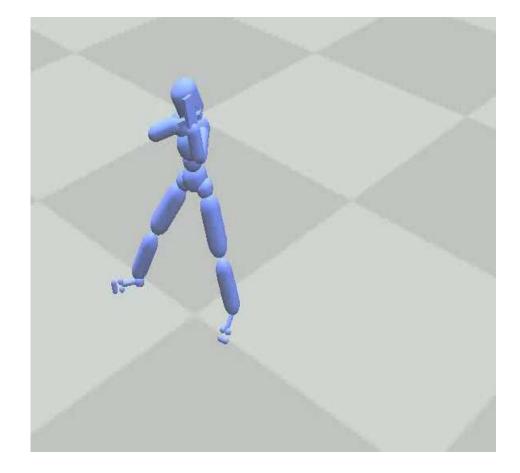


Results: Olympic Sports

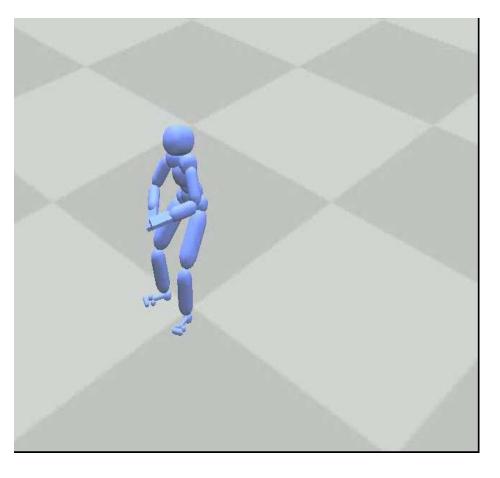
MotionCLIP

Tae kwon do

Boxing



AvatarCLIP



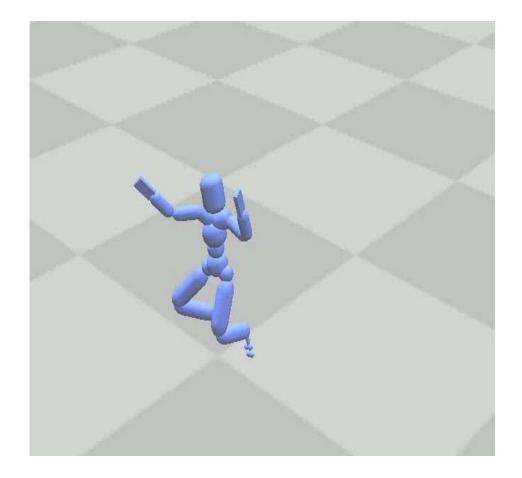


Results: Olympic Sports

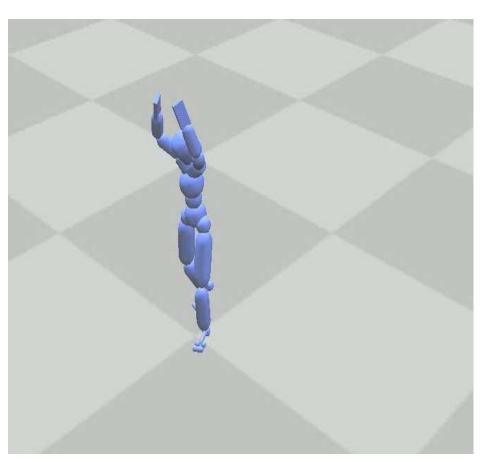
MotionCLIP

Hand ball

Jump shot



AvatarCLIP



Results: Human-Scene Interaction

Table 5: Human-Scene Interaction. FreeMotion achieves good results on three interaction tasks.

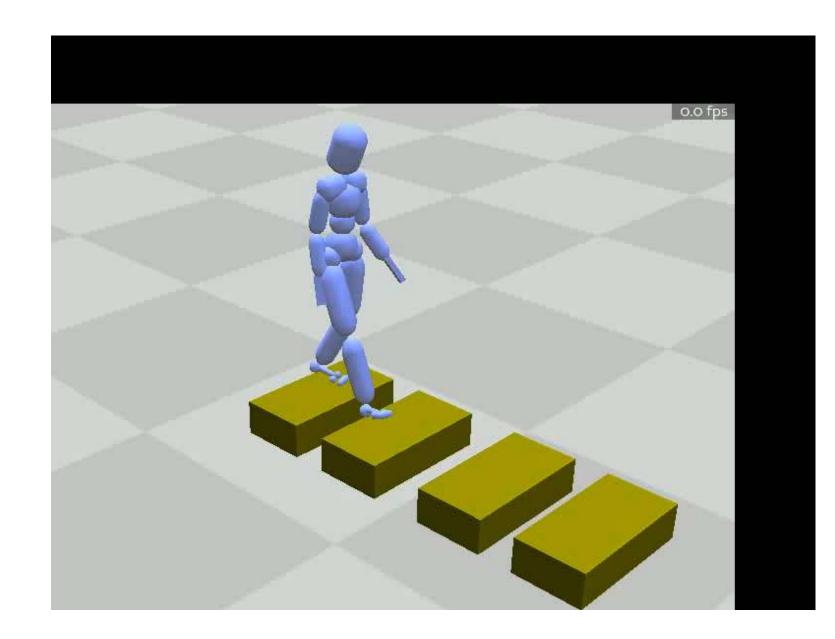
Methods		cess Rate Lie Dowr			ntact Err Lie Dowr	
InterPhys - Sit [14]	93.7	-	-	0.09). 19 1 1	-
InterPhys - Lie Down [14]	12	80.0		-	0.30	
UniHSI [41]	94.3	81.5	97.5	0.032	0.061	0.016
AMP-Sit [28]	83.6	2		0.074	9 19	1 -
AMP-Lie Down [28]		28.3		-	0.334	
AMP-Reach [28]	-	-	96.6	-)=	0.041
Ours	95	60	95	0.066	0.224	0.012

Sit down

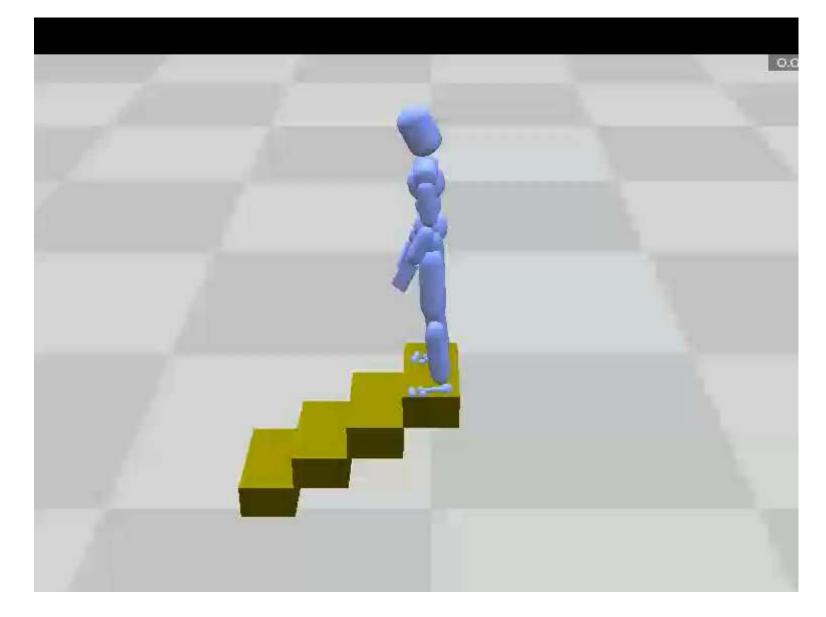
Results: Stepping Stones

Table 6: Stepping Stones. Please see the text for a detailed explanation of the numbers.

Task Parameter	ALLSTEPS [42]	Ours
Flat $(\Theta = 0)$		
$\Phi = 0$	1.45, 1.50	1.40, 1.45
$\Phi = 20$	1.35, 1.40	1.40, 1.40
Single-step $(\Phi = 0)$		
$\Theta = 50$	0.80, 0.80	0.60, 0.75
$\Theta = -50$	0.90, 0.95	1.00, 1.10
Continuous-step $(\Phi = 0)$))	
$\Theta = 50$	-, 0.65	0.50, 0.65
$\Theta = -50$	0.65, 0.70	0.75, 0.85
Spiral $(\Phi = 20)$		
$\Theta = 30$	0.80, 0.85	0.40, 0.80
$\Theta = -30$	1.00, 1.10	1.10, 1.30



Different terrains



Take Home Messages

- MLLMs contain strong common sense knowledge useful for physical interaction synthesis.
- by MLLMs.
- motion trajectories.

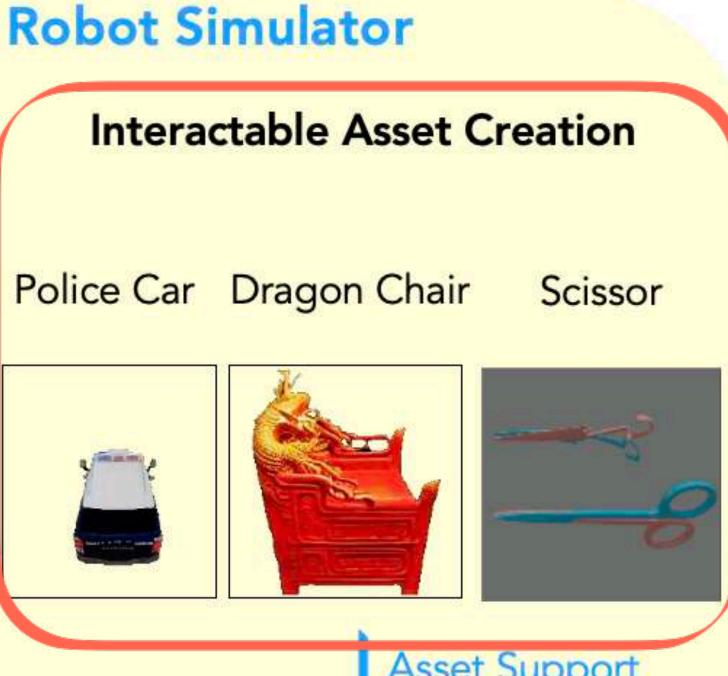
• A digital physical humanoid can interact with the open world solely driven

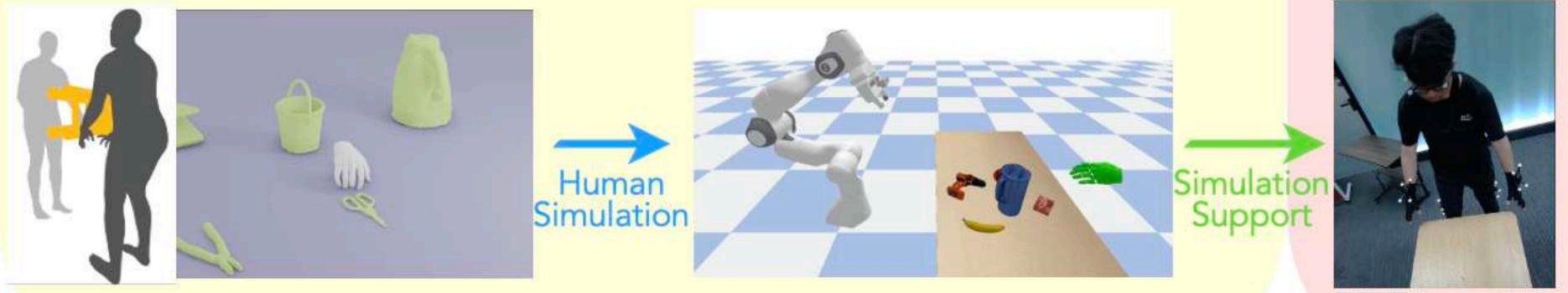
Real humanoid robots can potentially learn from the generated dynamic

Human-Centered Robot Simulator

Human Interaction Capturing

Human Interaction Synthesis





Asset Support

Open-World Perception

Visual Perception

Human-Centered Robotics

Collaborative Transport

Human-to-Robot Handover

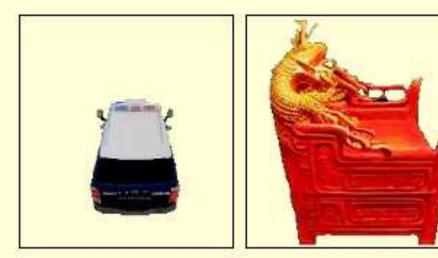
Human-Centered Robot Simulator

Human Interaction Capturing

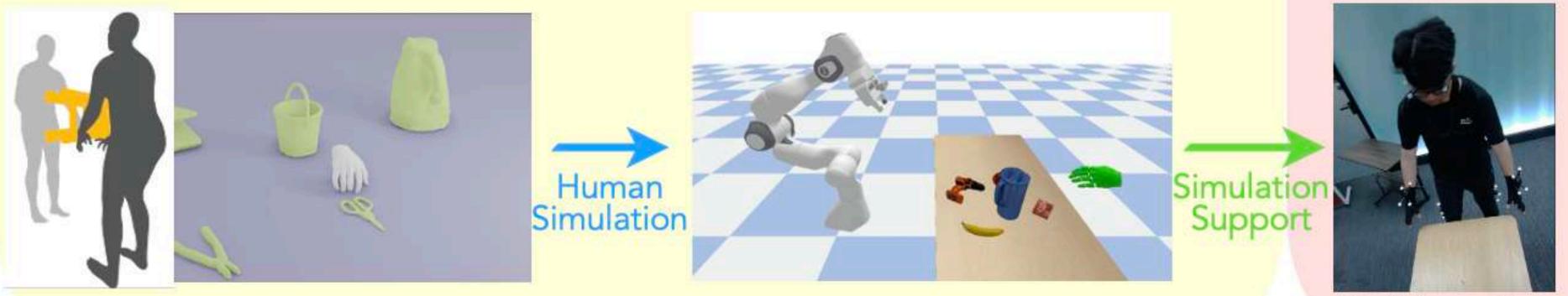
Interactable Asset Creation

Human Interaction Synthesis

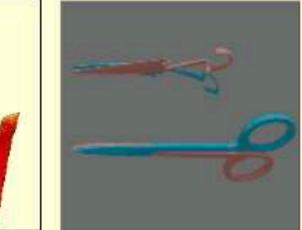
Police Car Dragon Chair



Human-Centered Robot Simulator



Scissor



Asset Support

Human-Centered EAI

Open-World Perception

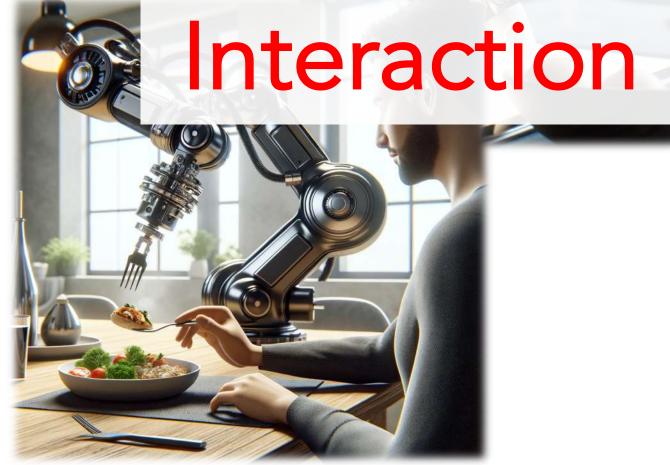
Visual Perception

Human-Centered Robotics

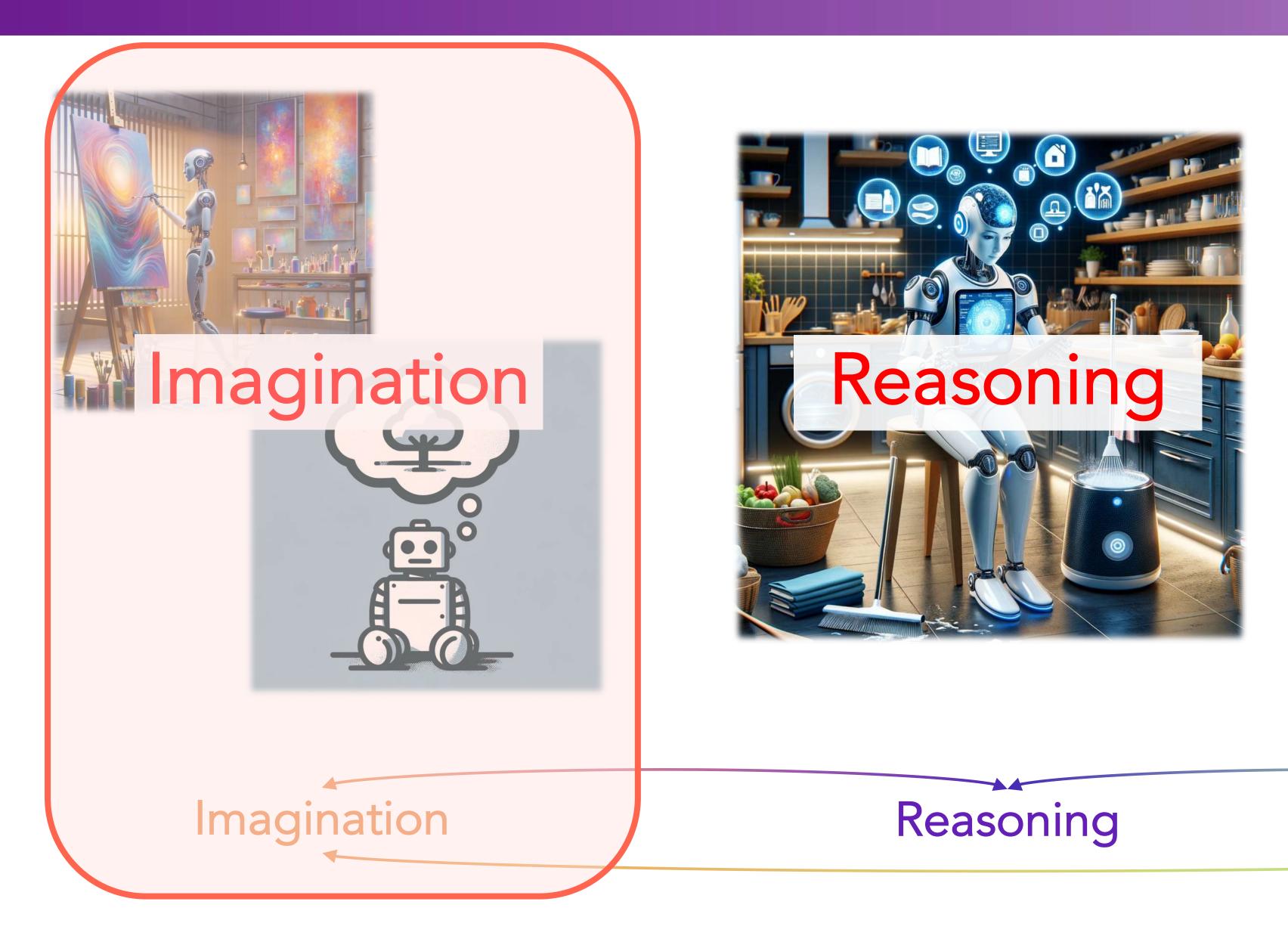
Collaborative Transport

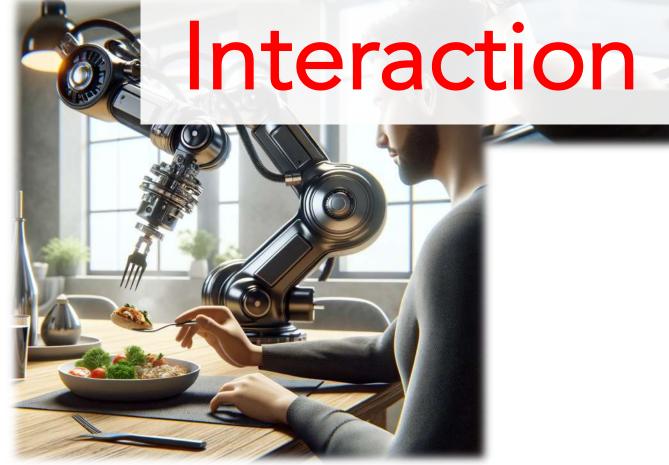
Human-to-Robot Handover

Embodied Intelligence

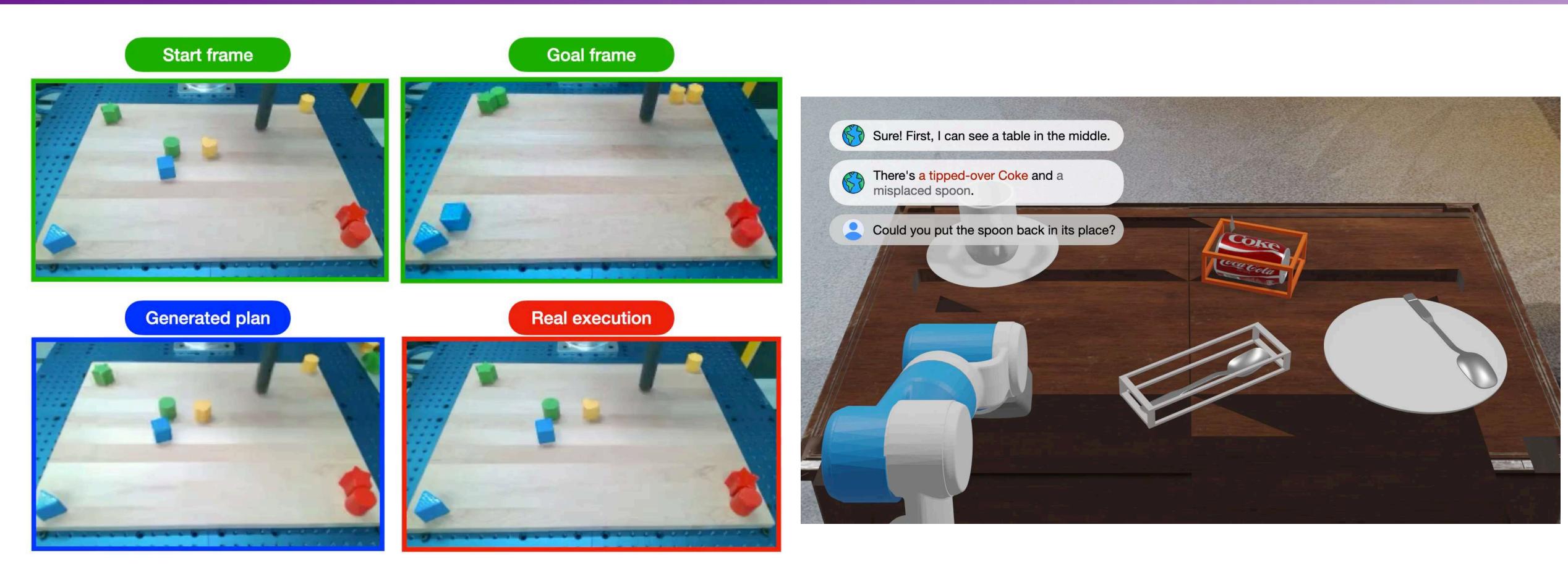


Embodied Intelligence





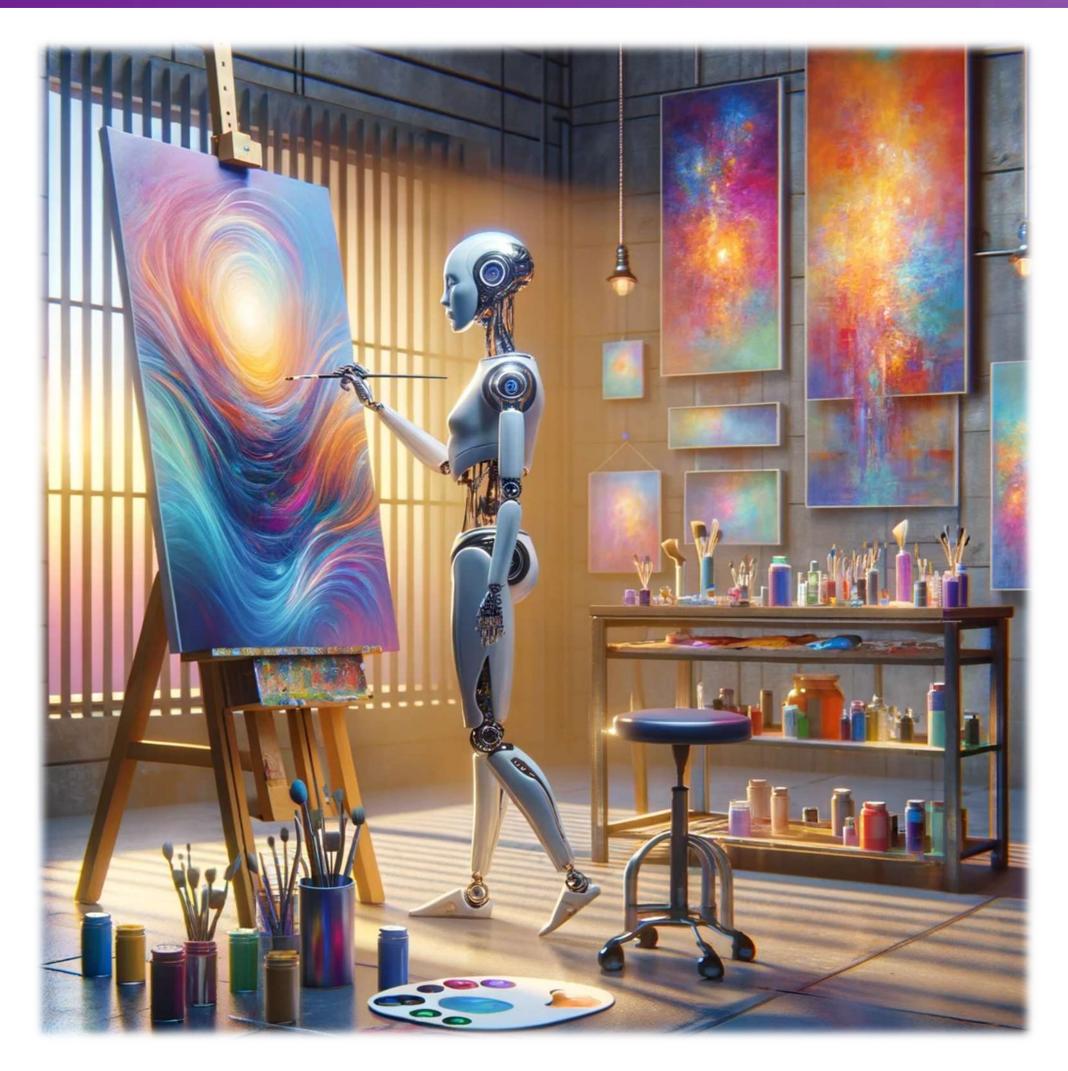
Imagination: Generative Intelligence Empowered World Models



UniSim

Yang et al., 2024. "Learning Interactive Real-World Simulators". Zen et al., 2024. "3D-VLA: A 3D Vision-Language-Action Generative World Model".

Key Observation: Synergy Between Reasoning and Imagination



Imagination

Reasoning

Key Observation: Synergy Between Reasoning and Imagination

Imagination

Reasoning

DreamLLM

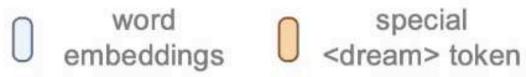
DreamLLM: Synergistic Multimodal Comprehension and Creation Runpei Dong, Chunrui Han, Yuang Peng, Zekun Qi, Zheng Ge, Jinrong Yang, Liang Zhao, Jianjian Sun, Hongyu Zhou, Haoran Wei, Xiangwen Kong, Xiangyu Zhang, Kaisheng Ma†, Li Yi†. ICLR 2024 (spotlight).

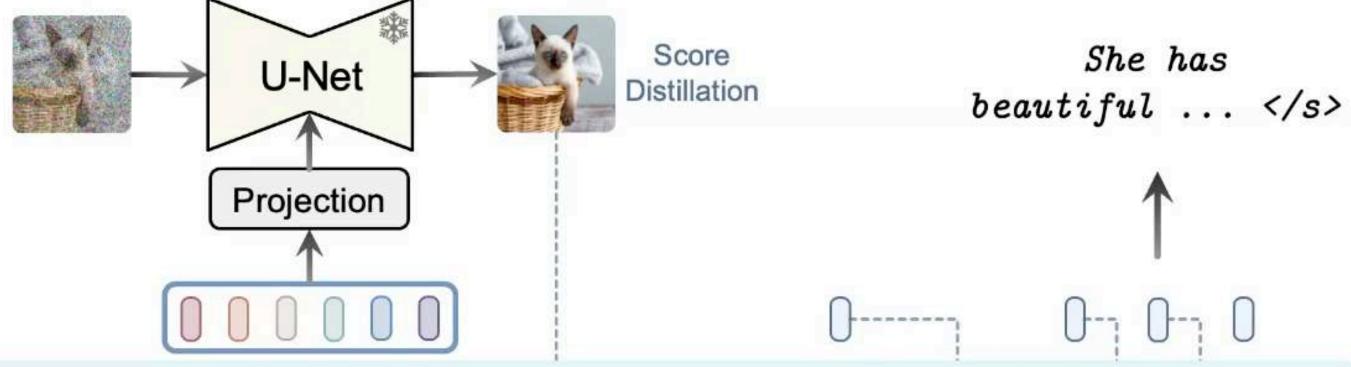
DreamLLM – Pipeline

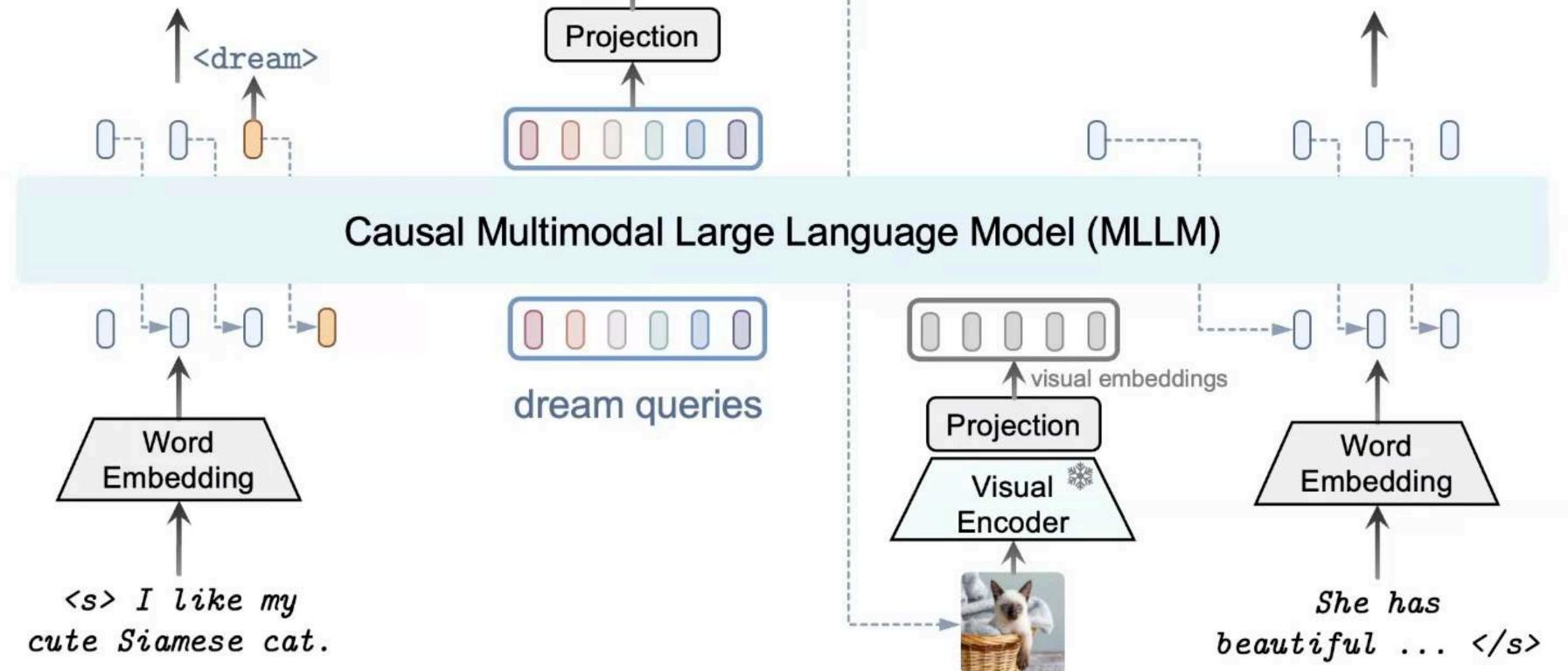
Interleaved Documents

"I like my cute Siamese cat.",

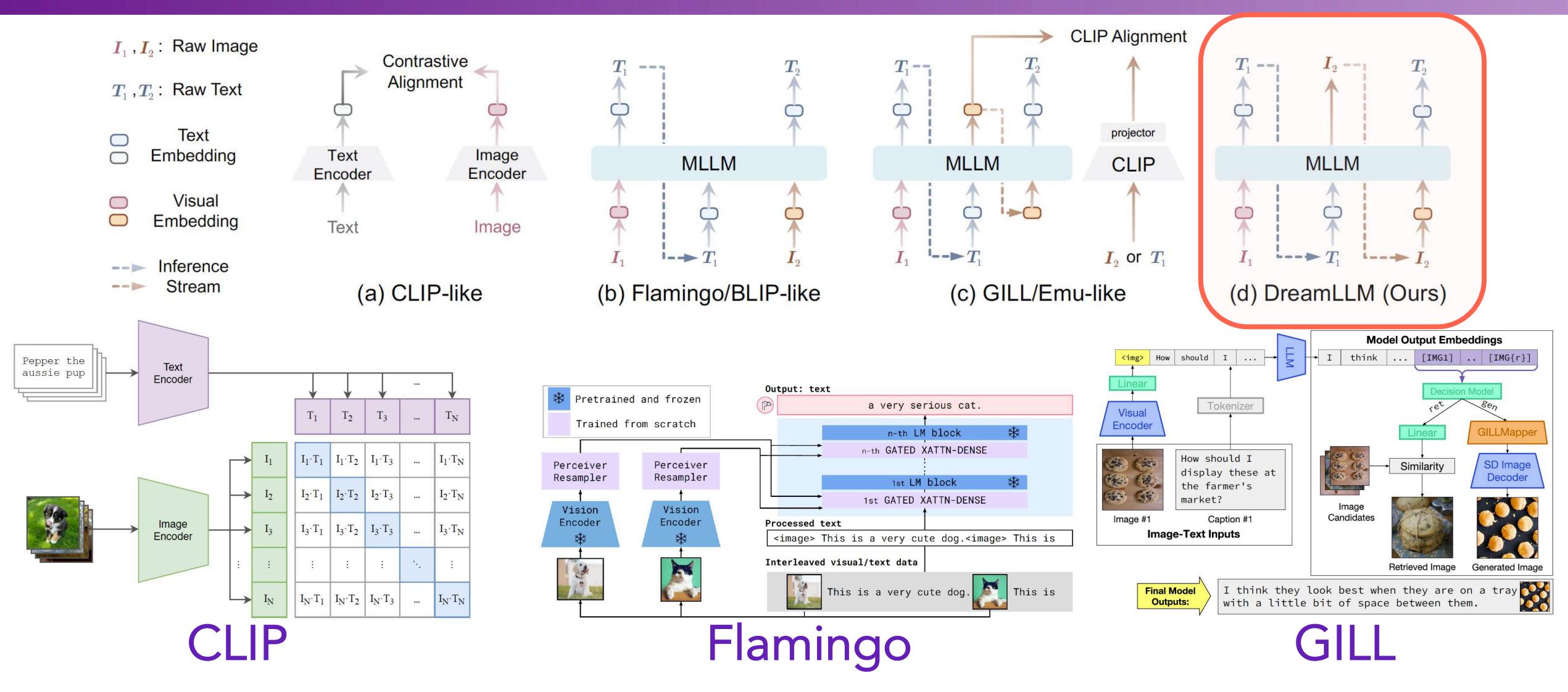
"She has beautiful blue eyes, and she likes to lie on her cozy nest.", ...







A Conceptual Comparison with Related Works



Radford et al., 2021. "Learning Transferable Visual Models From Natural Language Supervision". Alayrac et al., 2022. "Flamingo: a Visual Language Model for Few-Shot Learning". Koh et al., 2023. "Generating Images with Multimodal Language Models".

DreamLLM – Take Home Message

- but also as outputs in a truly end-to-end fashion.
 - modality-shared features while overlooking modality-specific features
- Interleaved Generative Pre-Training (I-GPT): DreamLLM is trained to generate interleaved multimodal corpora from the internet.
 - texts in the document

• Generate Everything as It Is: DreamLLM not only takes all modalities raw data as inputs

o Avoid aligning with intermediate representations like CLIP which primarily learn

o A natural modeling of all joint, marginal, and conditional distributions of images and

• A learning synergy grounding DreamLLM's comprehension in creation and vice versa.

DreamLLM – Experiments

Can you give a short introduction to this movie?

The Godfather, also known as Il Padrino, is a classic American crime drama film directed by Francis Ford Coppola. It is the first installment in The Godfather trilogy, which also includes The Godfather Part II (1974) and The Godfather Part III (1990). The movie is widely regarded as a masterpiece and a milestone in the mafia genre, exploring the story of the Corleone family, a fictional Italian-American crime family in New York. It follows the transformation of Michael Corleone, the youngest son of the family's aging don, Vito Corleone, as he rises to power and eventually takes on the mantle of his father. The film features a strong cast, which includes Marlon Brando as Vito Corleone, Al Pacino as Michael Corleone, James Caan as Sonny Corleone, Robert Duvall as Tom Hagen, and Diane Keaton as Kay Corleone. The Godfather is known for its iconic scenes, memorable lines, and its impact on the Hollywood film industry.

> Good. Show me an illustration of a panda wearing a suit and drinking the martini like the Godfather.

An illustration of a panda wearing a suit and drinking a martini like the Godfather.

8

Any-to-Any in Vision Language

This is a Welsh Corgi.

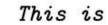
What is the title of this painting? Answer: The Son of Man.

Input Prompt

This is a Koala.

Completion

a woolly Mammoth.



Who painted this?

Claude Monet.

When was this masterpiece painted? Answer: 1818.

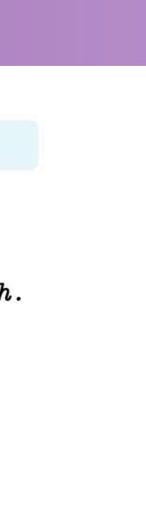
Joker

Film name: Harry Potter and the Prisoner of Azkaban

Film name: Blade Runner 2049

Film name:

In Context Learning



DreamLLM – Experiments

illustrate your procedure.

As a robot agent in the house, I would walk through the house to grab the mobile phone in the dining room as shown in the image below. <dream_1> First, I would look around the living room to make sure the area is safe and there are no obstacles or people that I need to avoid. I would then walk towards the dining room and stop before entering the room. Next, I would look for the mobile phone on the table, as shown in the image below. <dream_2>

Once I have identified the phone, I would then move closer to it and extend my robot arm to grab it, as shown in the image below. <dream_3>

Once the phone is grabbed, I would then bring it back to the living room and place it on the table where it belongs.

Human Instruction

DreamLLM Generation

Instruction-Following Interleaved Content Creation

Imagine you are a robot agent in the house. There is a mobile phone on the dining table in the dining room, and you are in the living room. Write a short article about how would you walk through the house to grab the mobile phone with your robotic arm step by step. Include several high-quality photographs to



DreamLLM – Experiments

an armchair in the shape of an avocado

an astronaut riding a horse I, where I E {"in a photorealistic style", "in the style of Pop Art", "as a charcoal sketch", "as a golden relief"}

panda mad scientist mixing sparkling chemicals. art station

Input Image

dog

wearing a top hat

an espresso machine that makes coffee I, art station, where $I \in {$ "in a warm scene", "from human soul" $}$

a futuristic city I, where I ∈ {"in a synthwave style", "in vaporwave style", "made of water", "Beijing opera style"}



Delicious food.

Teddy bear

(a) In-context Image Edition

Text-to-Image Generation

swimming in the pool

DreamLLM

in the jungle

sunglasses

Input Image

on the beach

in blue

in the jungle

as a lamp

DreamLLM

Input Image

car

A bear.

A salmon. X.

A ship on the ocean. X.



A pod of dolphins leaping out of the water in an ocean, with a ship on the background.

(c) In-context Compositional Generation

Image-to-Image & In-Context Image Generation

on the beach

A black dog

A dog X.

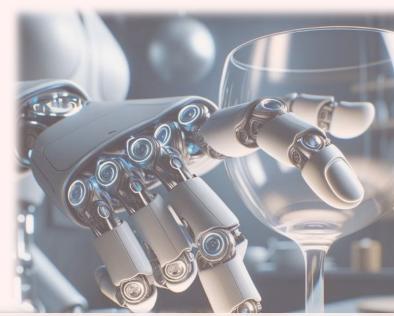
swims in water

in the snow lies on sofa

(b) In-context Subject-Driven Generation

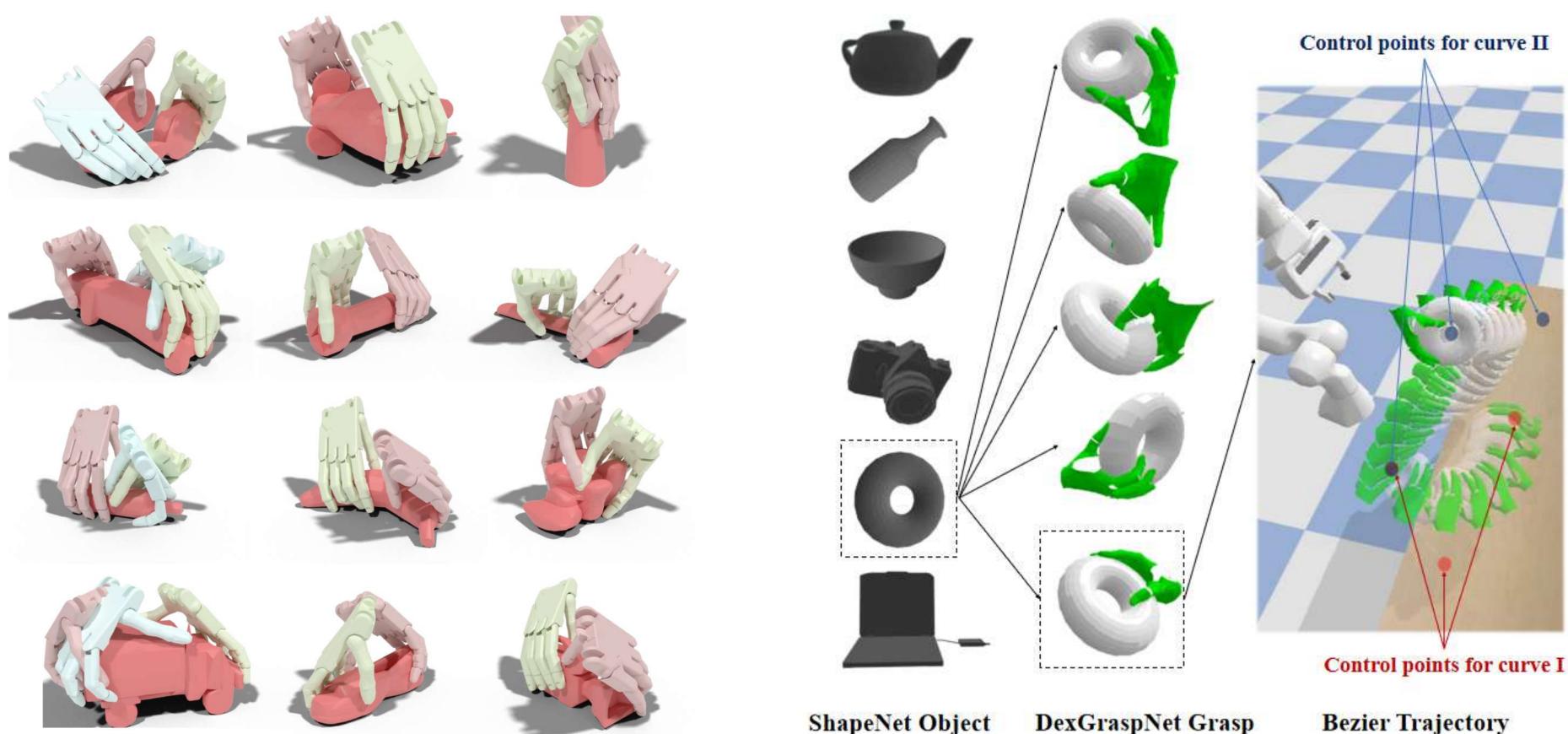
Embodied Intelligence

Reasoning



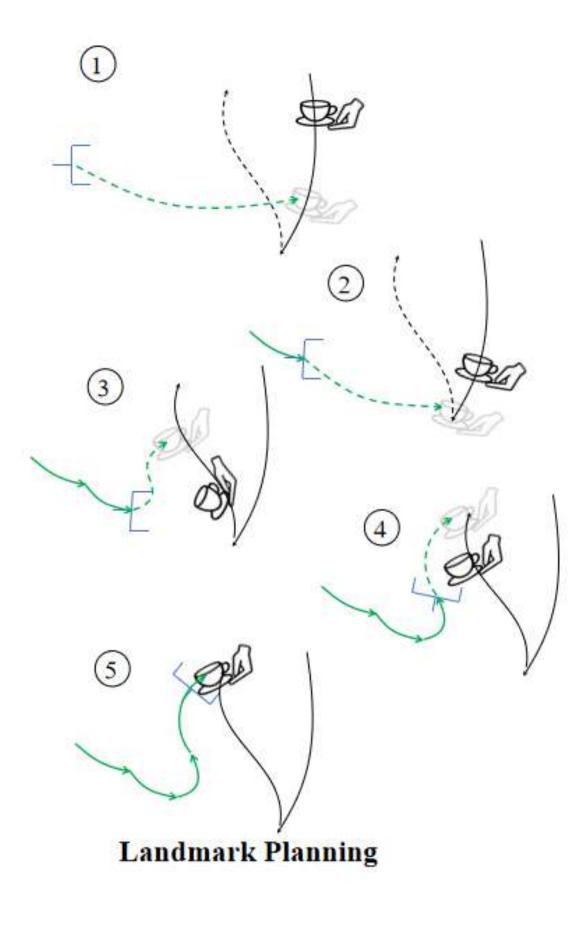
Interaction

Interaction: Grounded on the Geometric and Physical Understanding of the Dynamic World



UniDexGrasp

Xu et al., 2021. "UniDexGrasp: Universal Robotic Dexterous Grasping via Learning Diverse Proposal Generation and Goal-Conditioned Policy". Wang et al., 2022. "GenH2R: Learning Generalizable Human-to-Robot Handover via Scalable Simulation, Demonstration, and Imitation".



DexGraspNet Grasp

Bezier Trajectory

GenH2R

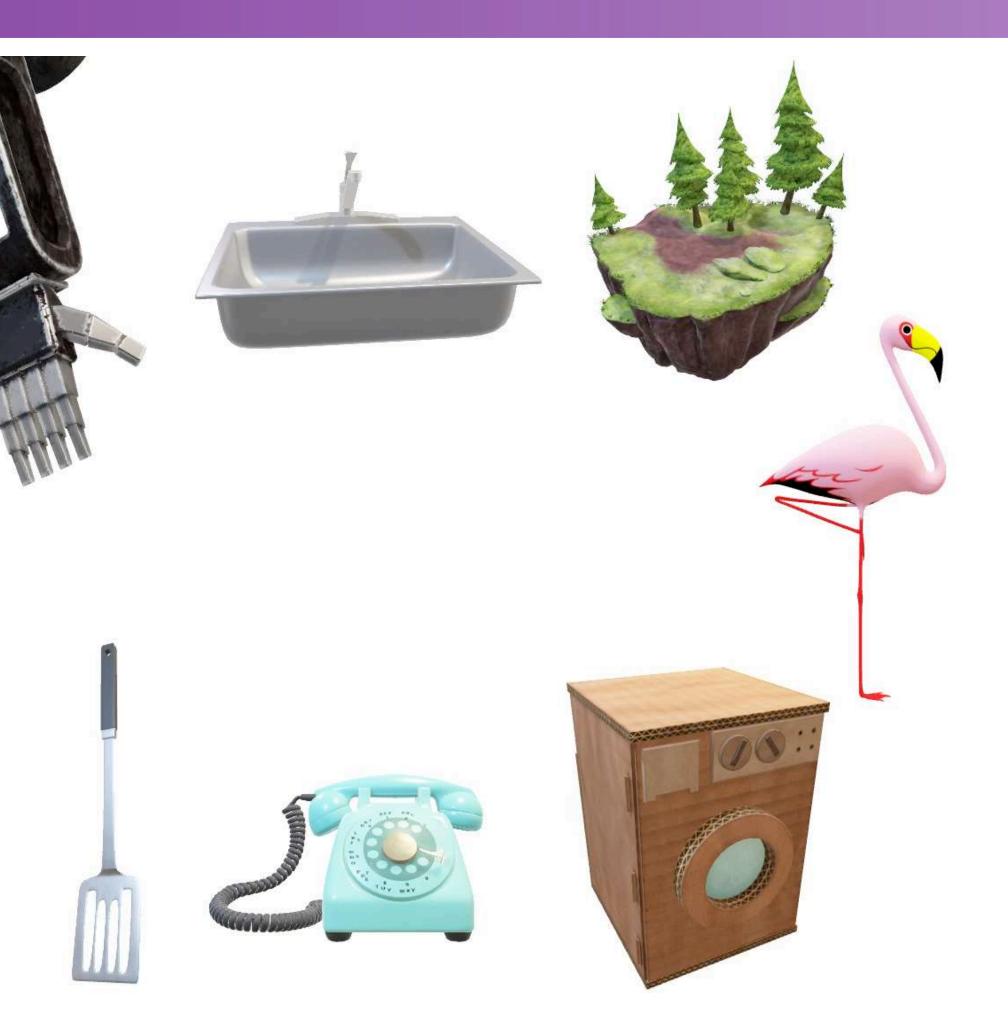
Goal: Inject Actionable Information into MLLMs

Reasoning

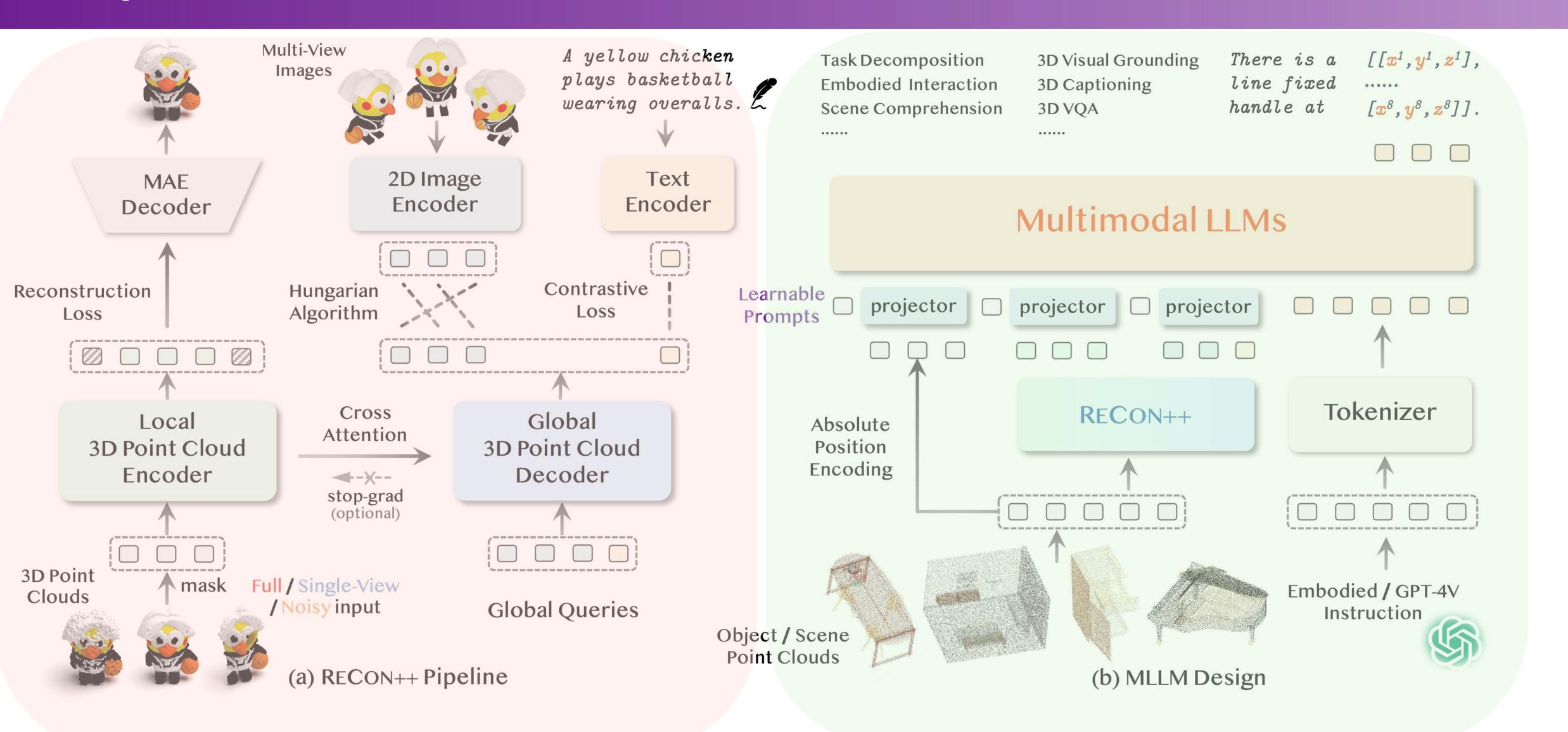
Interaction

ShapeLLM

ShapeLLM: Universal 3D Object Understanding for Embodied Interaction Zekun Qi, Runpei Dong, Shaochen Zhang, Haoran Geng, Chunrui Han, Zheng Ge, He Wang, Li Yi†, Kaisheng Ma†. In submission.



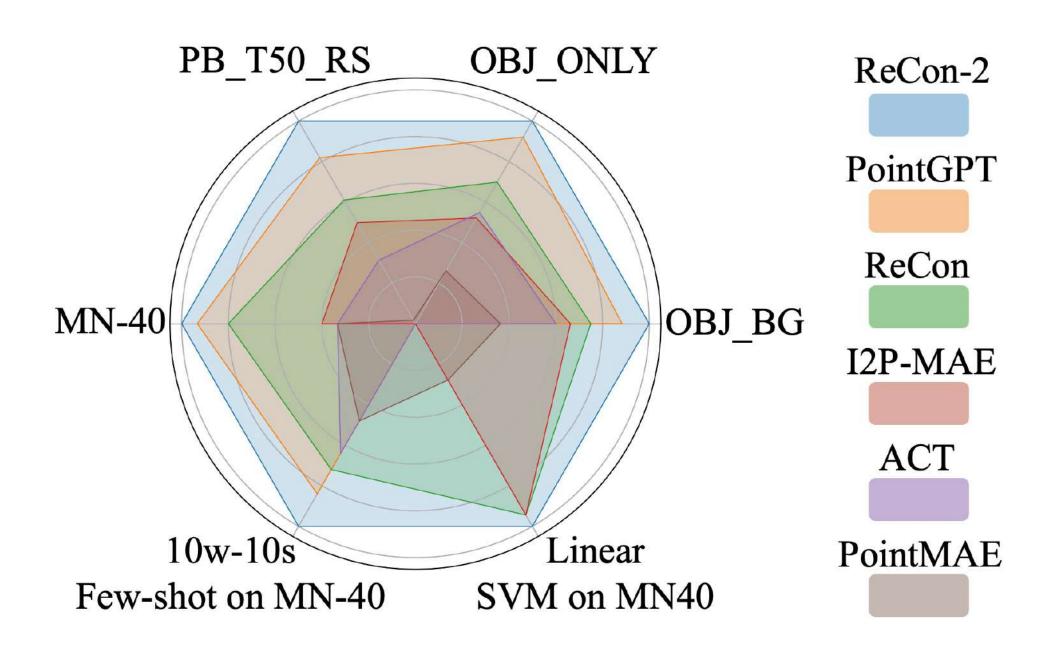
ShapeLLM

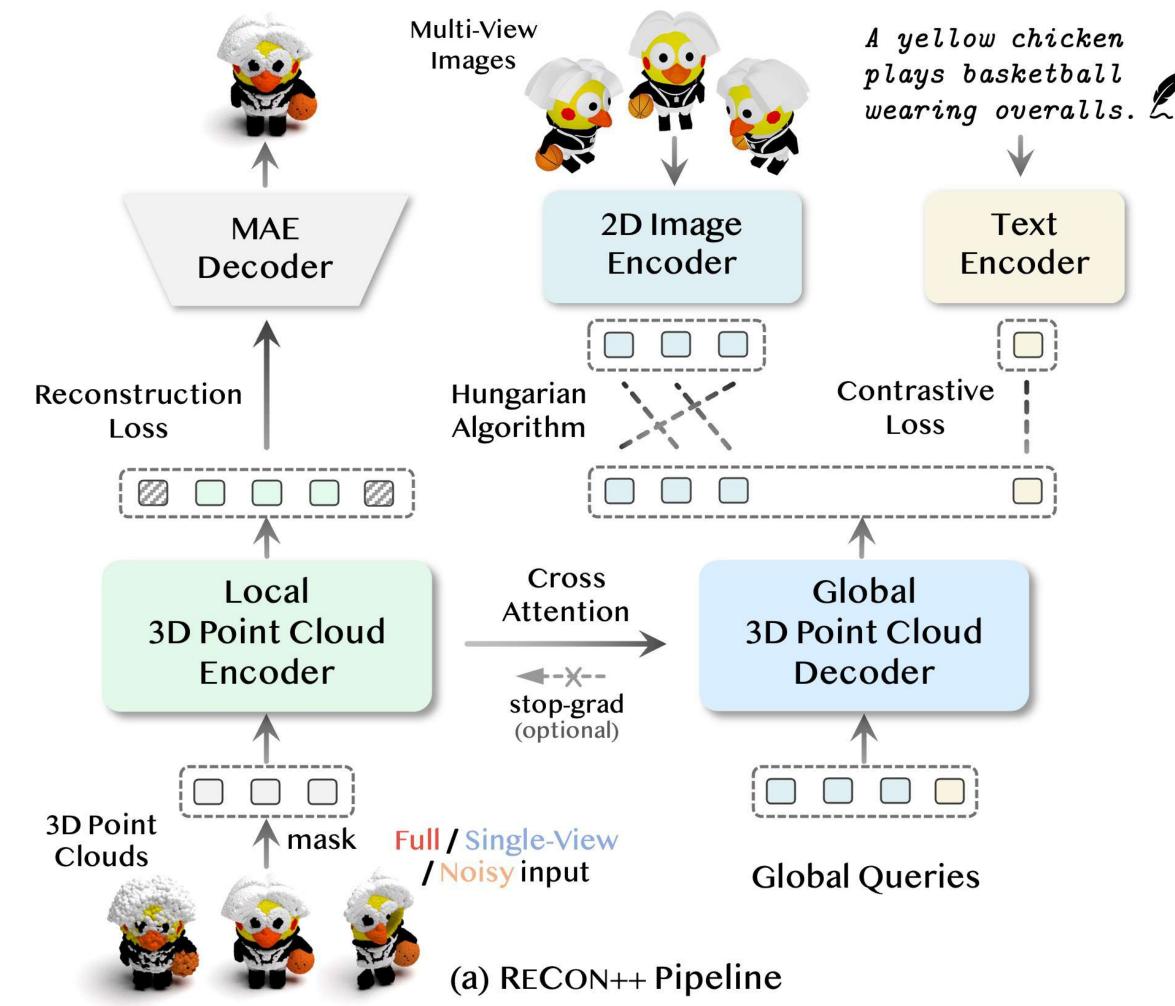


ShapeLLM – Scaling up 3D Representation Learning

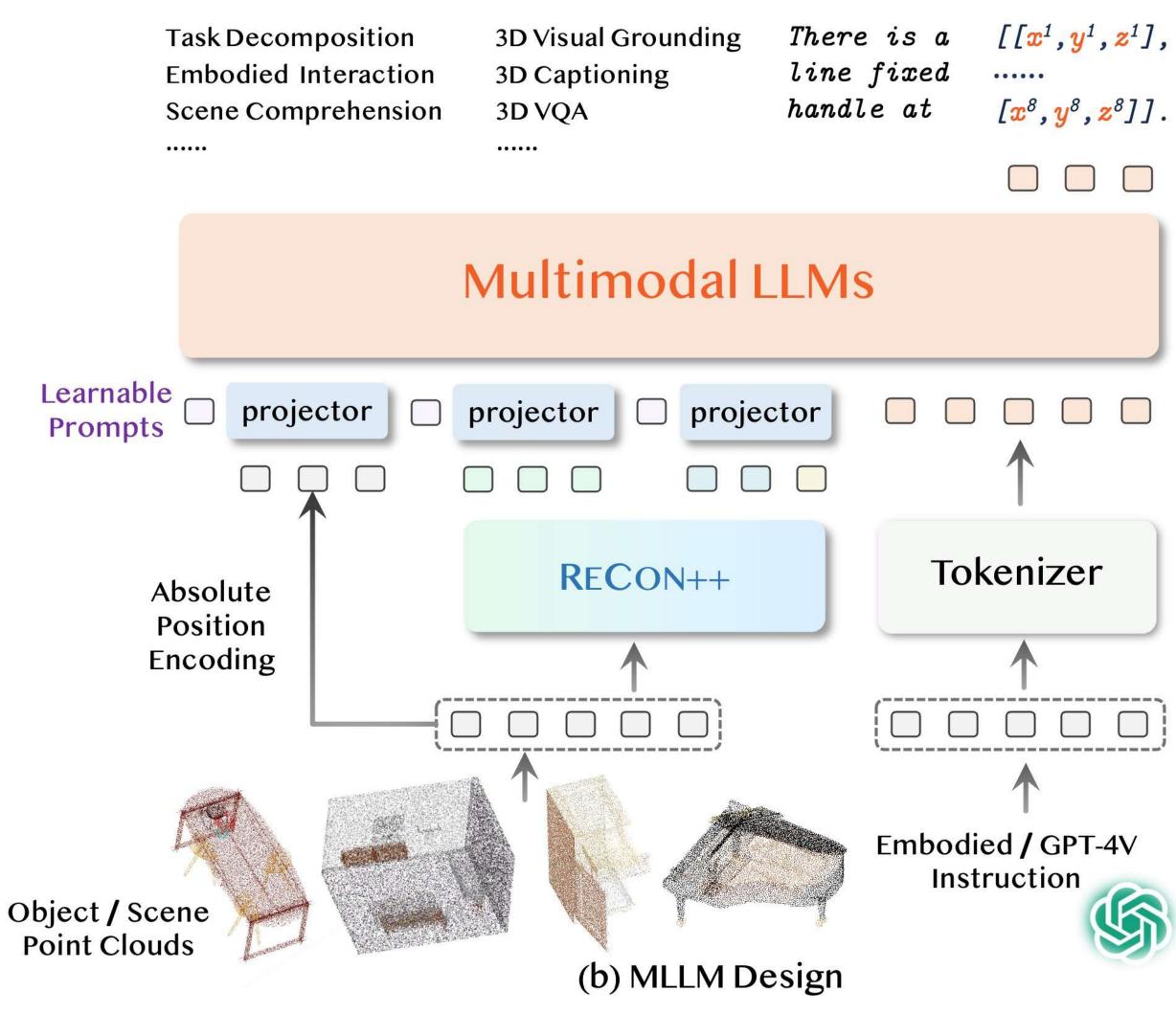
Point Cloud Encoder

- 1. Scaling up to Objaverse
- 2. Distillation from multi-view images
- 3. Training with single-view & noisy points





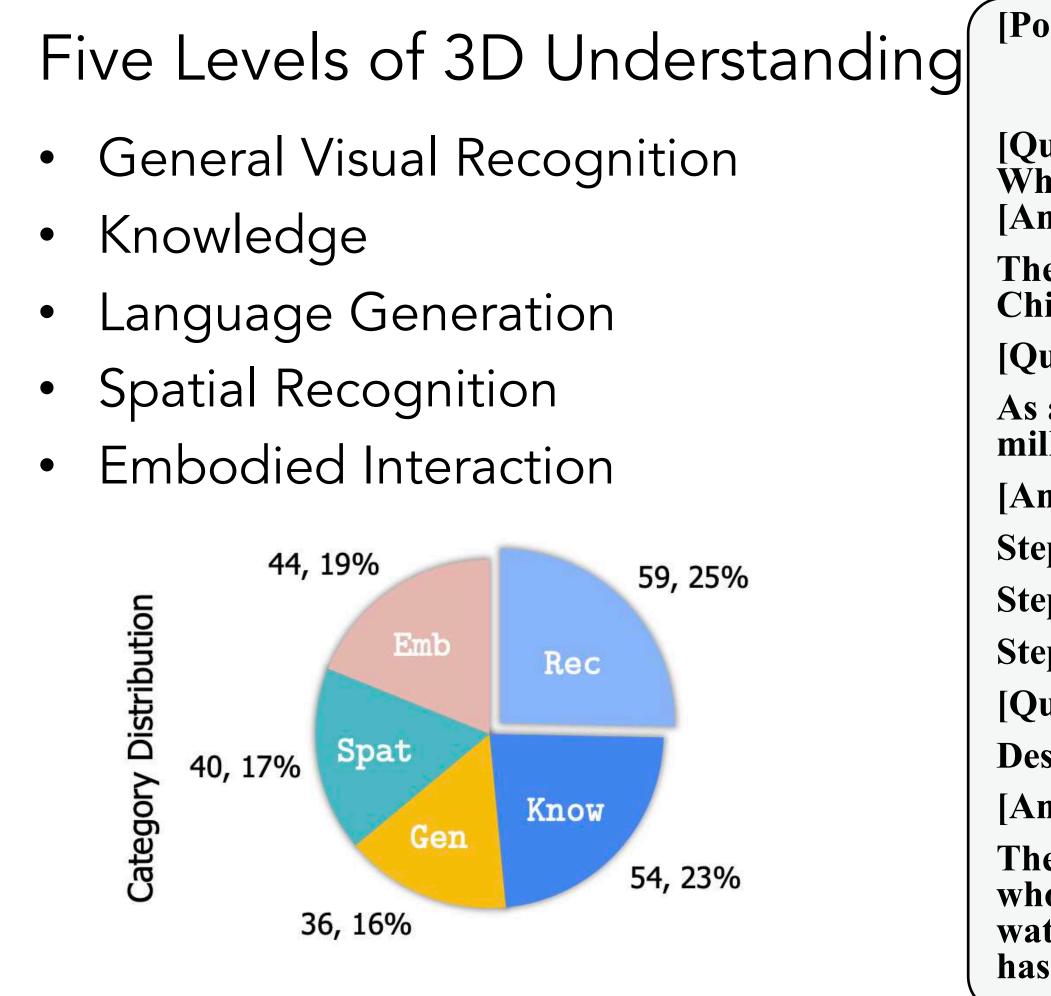
ShapeLLM – Bridging 3D and LLMs



Feature E	Bridg	ge
-----------	-------	----

- 1. Multi-level feature projection
 - Global contrastive feature
 - Local geometry reconstruction
 - Absolute position encoding
- 2. Visual prompt tuning

ShapeLLM – Solving the 3D Data-Dessert Issue



[Point Clouds]

- **Type: General Visual Recognition**] [Question¹] What subparts are there in the scene? [Answer¹]
- There is a bag of cookies, a mug of milk and a China bowl.
- [Question² Type: Embodied Interaction]
- As an AI robot, please give me steps to mix the milk and cookies in a bowl.
- [Answer²]
- **Step 1: Pour the milk into the bowl.**
- **Step 2: Put the cookies into the bowl.**
- **Step 3: Stir with a spoon.**
- [Question³ Type: Knowledge]
- **Describe the physical properties of the milk.**
- [Answer³]
- The milk is a kind of liquid with a white color, whose density and boiling point is higher than water while the freezing point is lower than water, has a mild, slightly sweet odor and taste.

point cloud input

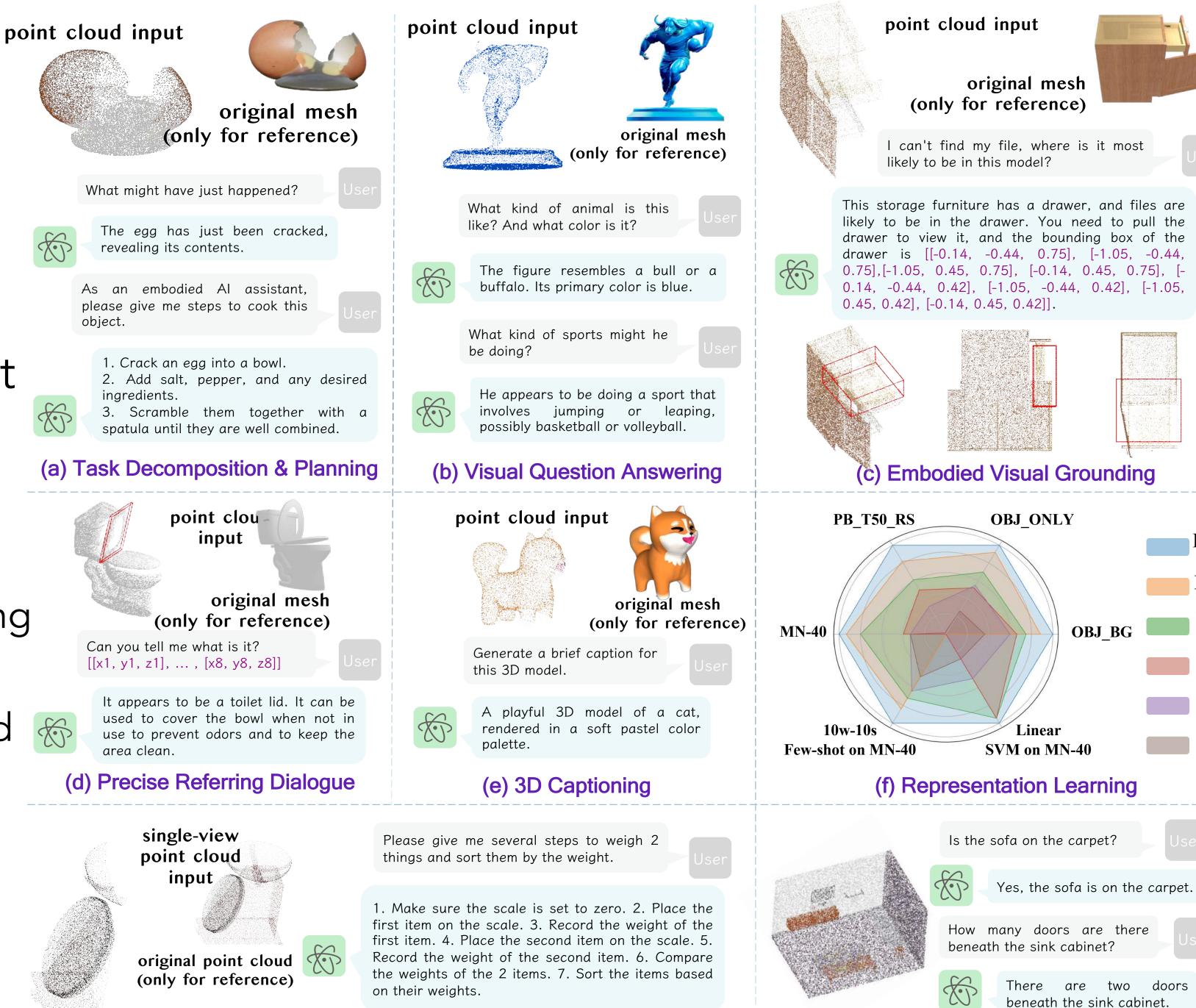
original mesh (only for reference)

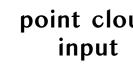
3D MM-Vet: 3D Multimodal Comprehension Evaluation Benchmark

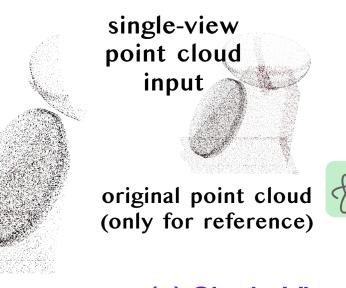
Open-World Embodied Reasoning Examples

3D Multimodal Generalist

- 1. Interaction-oriented openworld embodied reasoning
- 2. Physically grounded 3D object or part understanding
- 3. Generalizable 3D representation learning and understanding





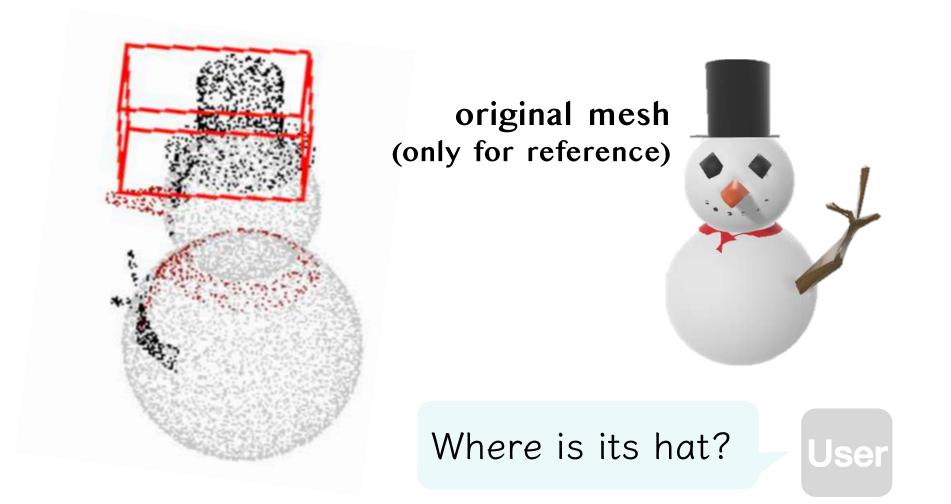


(g) Single-View Point Cloud Understanding

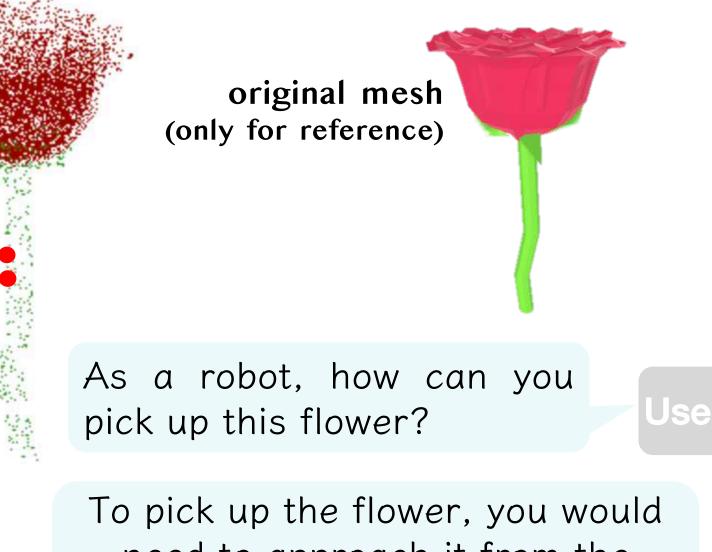
(h) Scene Understanding

Point-MAE

Open-World Embodied Reasoning Examples

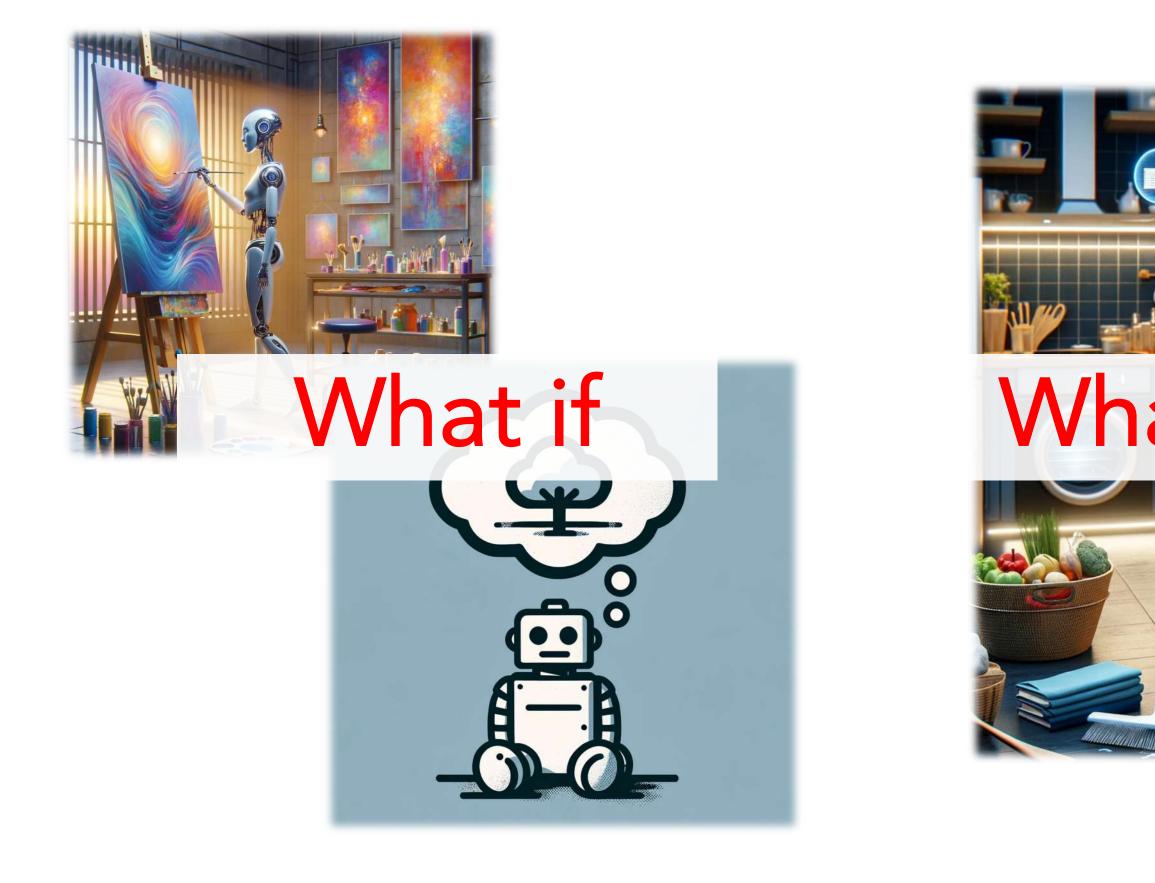


Its hat is located at [[-0.4, -0.45, 0.86], [-0.4, 0.28, 0.86], [0.08, 0.28, 0.86], [0.08, -0.45, 0.86], [-0.4, -0.45, 0.44], [-0.4, 0.28, 0.44], [0.08, 0.28, 0.44], [0.08, -0.45, 0.44]].



To pick up the flower, you would need to approach it from the front and gently grasp the stem at the point closest to the robot, such as [-0.01, 0.02, -0.49] or [-0.01, 0.02, -0.46].

Takeaway



What and why

<image>

Human-Centered Robot Simulator

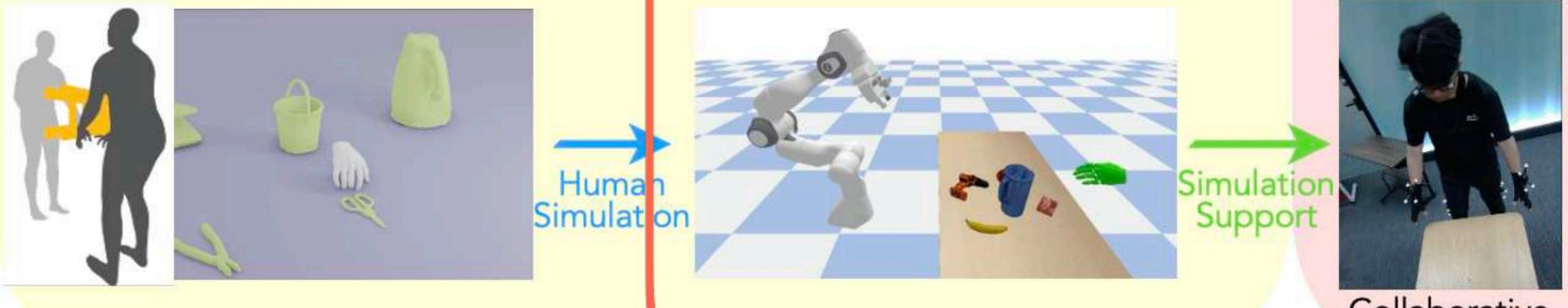
Human Interaction Capturing

Interactable Asset Creation

Police Car Dragon Chair

Human Interaction Synthesis

Human-Centered Robot Simulator



Scissor

Asset Support

Human-Centered EAI

Open-World Perception

Visual Perception

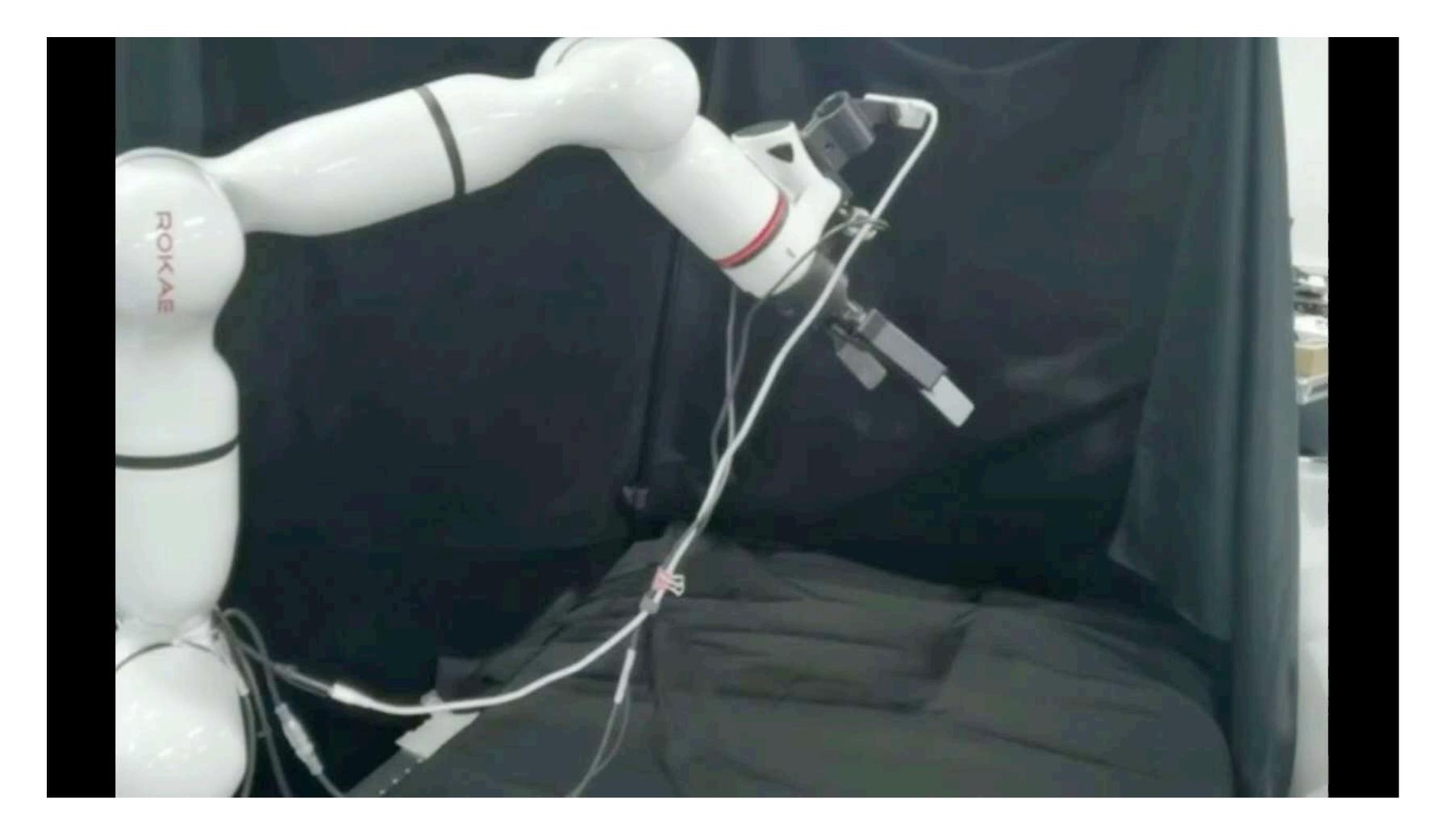
Human-Centered Robotics

Collaborative Transport

Human-to-Robot Handover

GenH2R: Learning Generalizable Humanto-Robot Handover via Scalable Simulation, Demonstration, and Imitation Zifan Wang*, Junyu Chen*, Ziqing Chen, Pengwei Xie, Rui Chen, Li Yi **CVPR 2024**

Task Goal

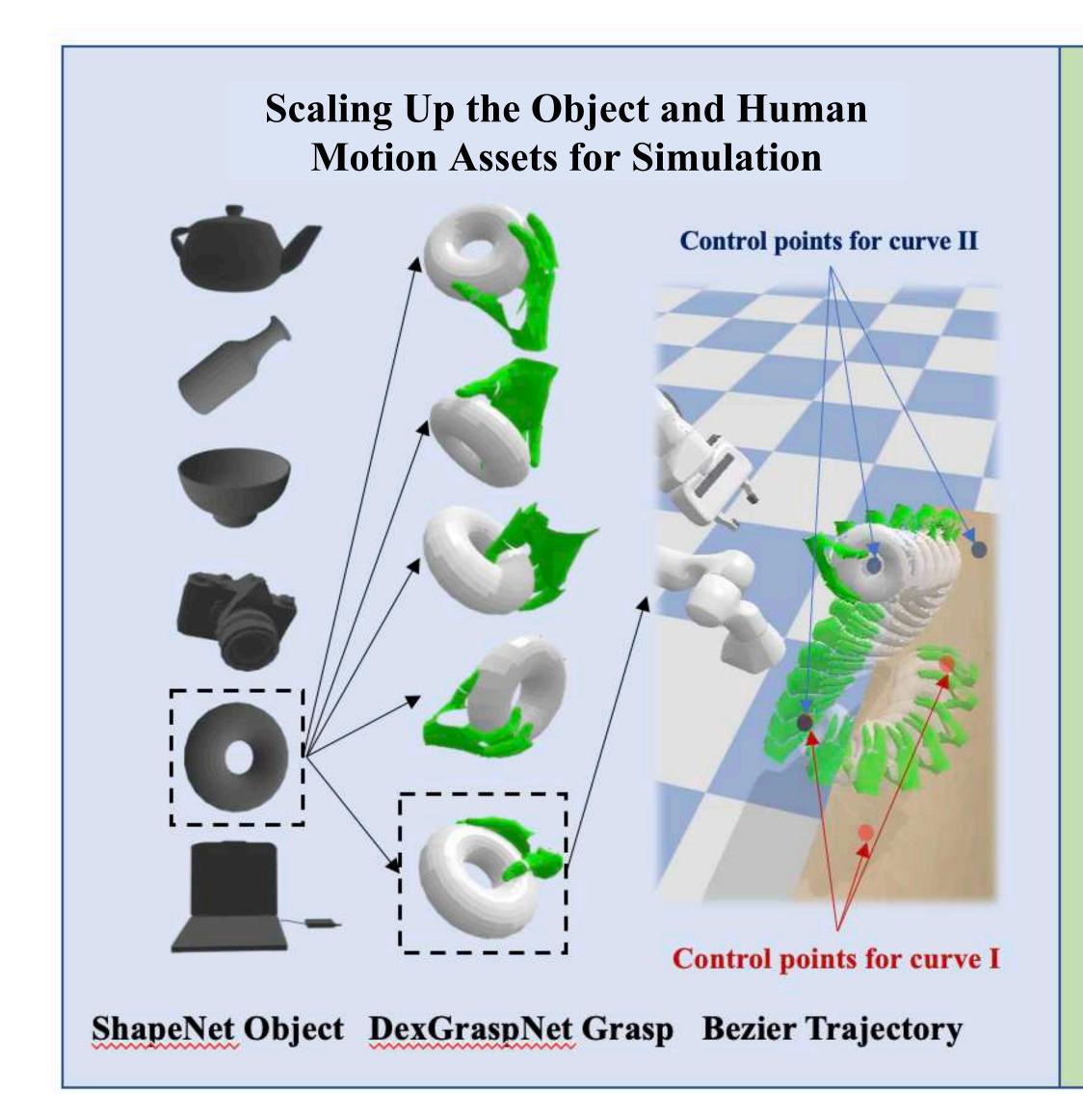


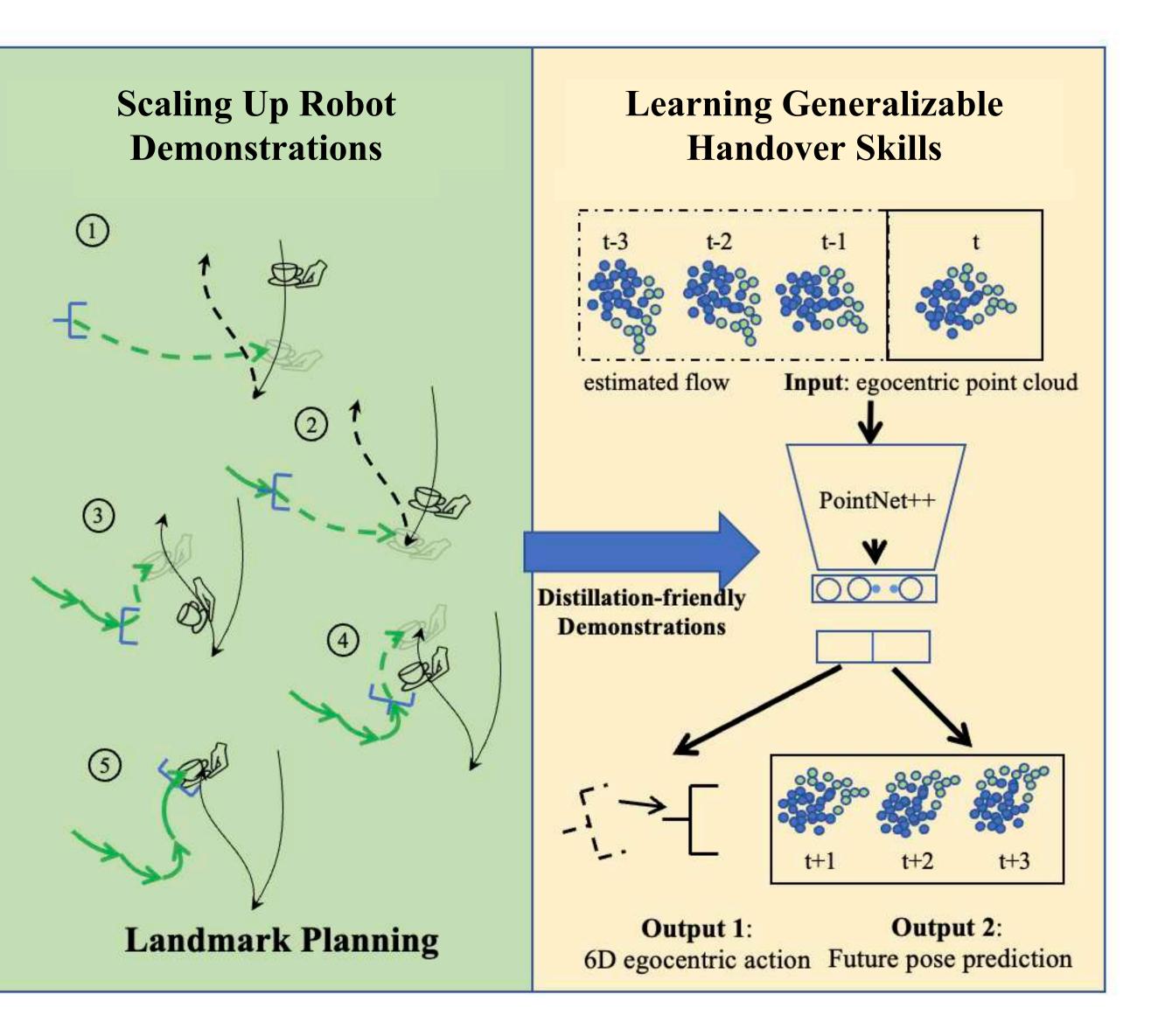
- Arbitrary objects
- Arbitrary human grasp
- Arbitrary human motion

Challenges

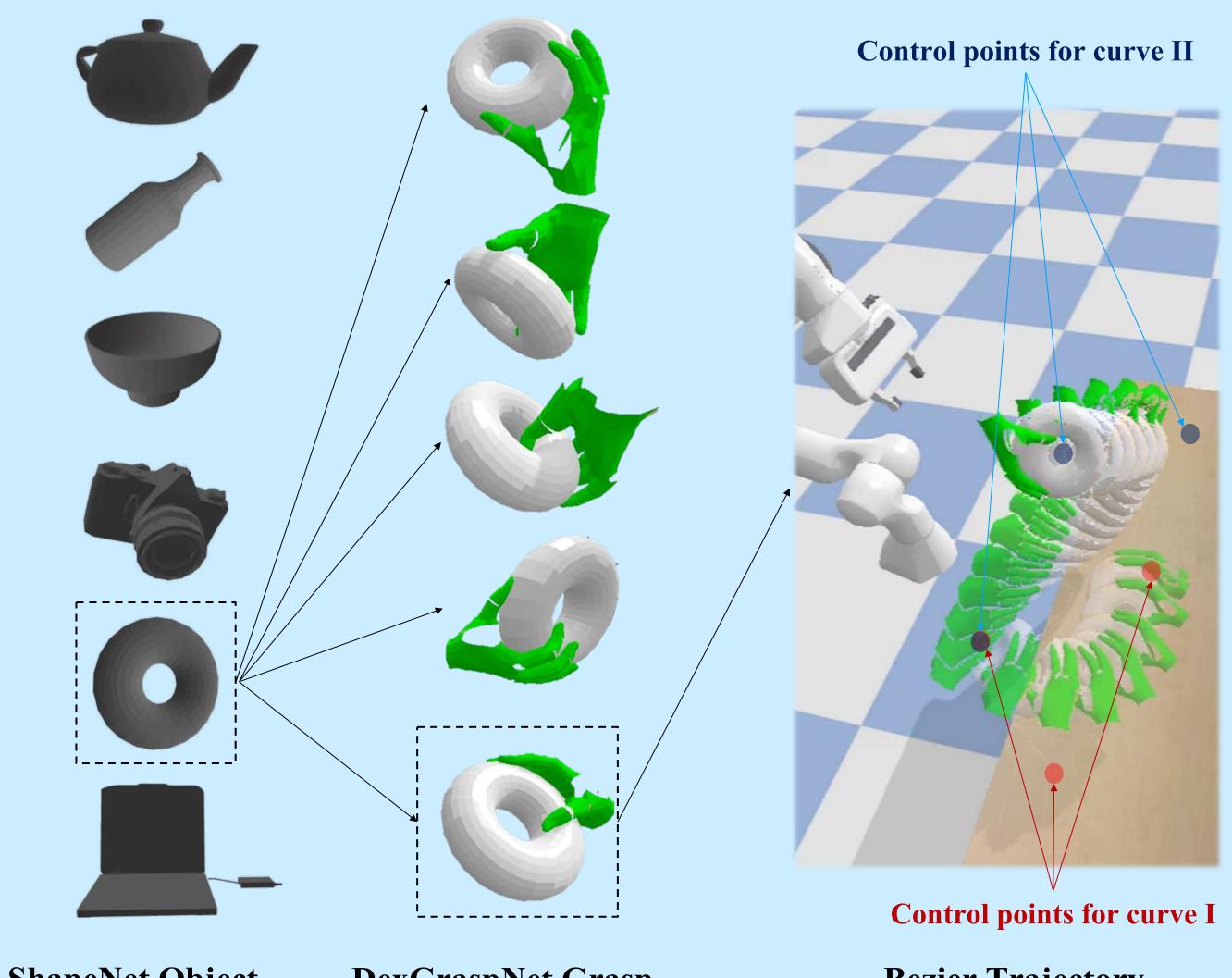
- How to scale up the object and human motion assets for simulation?
- How to scale up robot demonstrations?
- How to learn generalizable handover skills?

Method Overview





Human Simulation: Generating Hand-Object Trajectory



ShapeNet Object

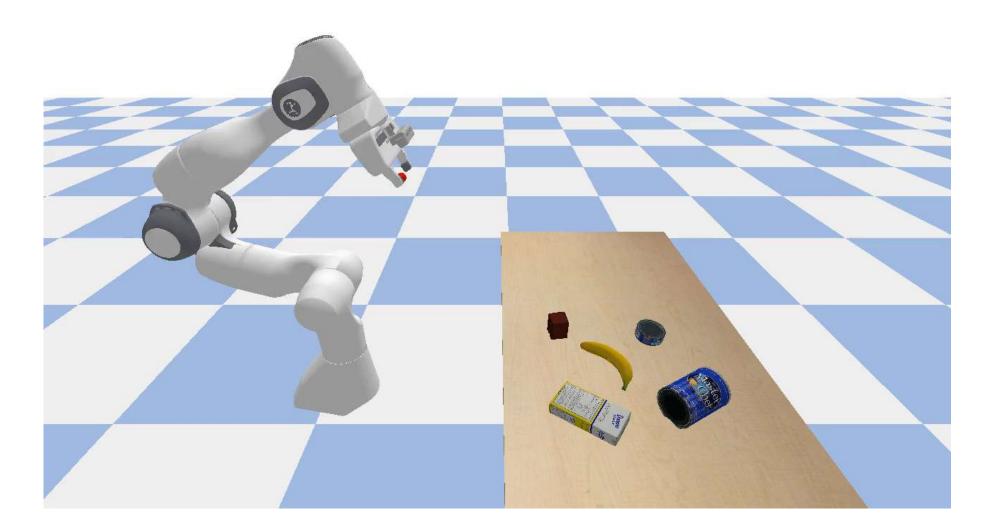
DexGraspNet Grasp

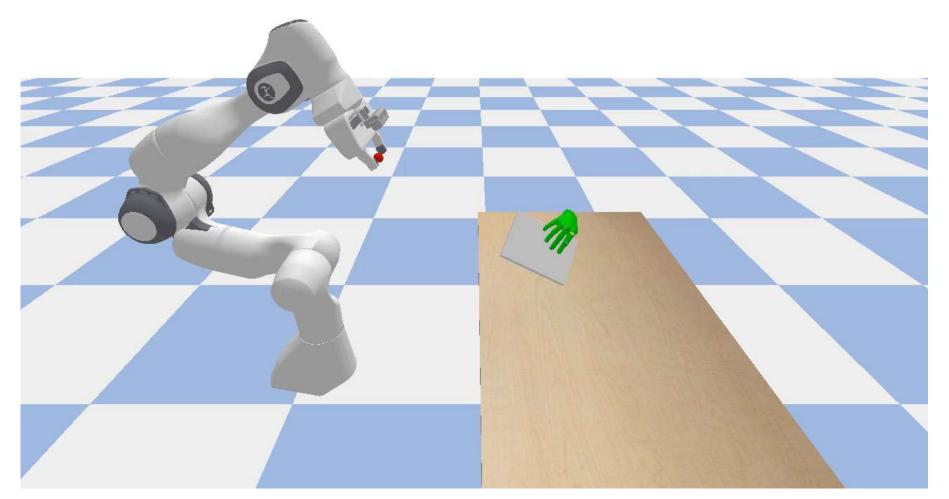
Bezier Trajectory

- 3,000+ objects from ShapeNet
- 250+ hand grasps for each object from DexGraspNet
- \sim 1,000,000 hand-object trajectories in total

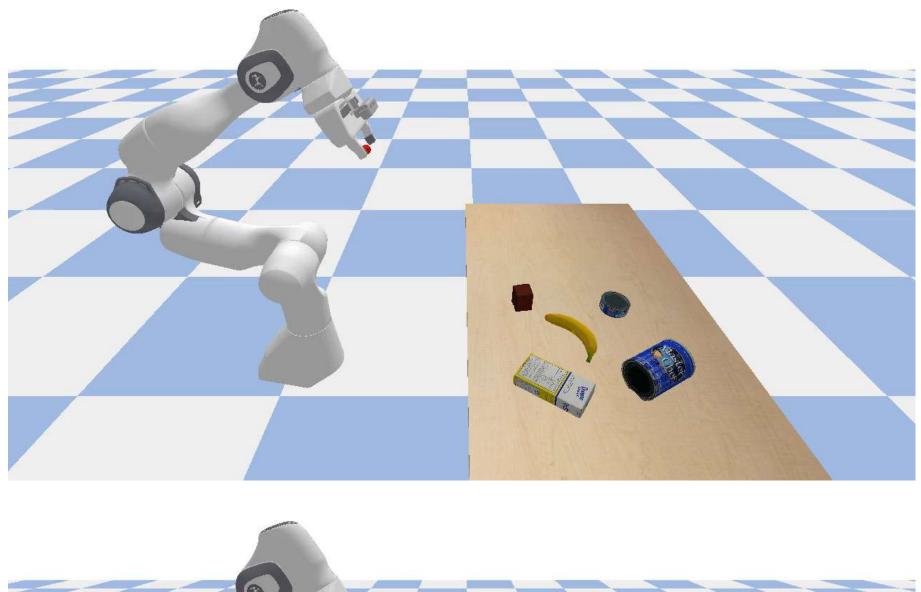
Human Simulation: Generating Hand-Object Trajectory

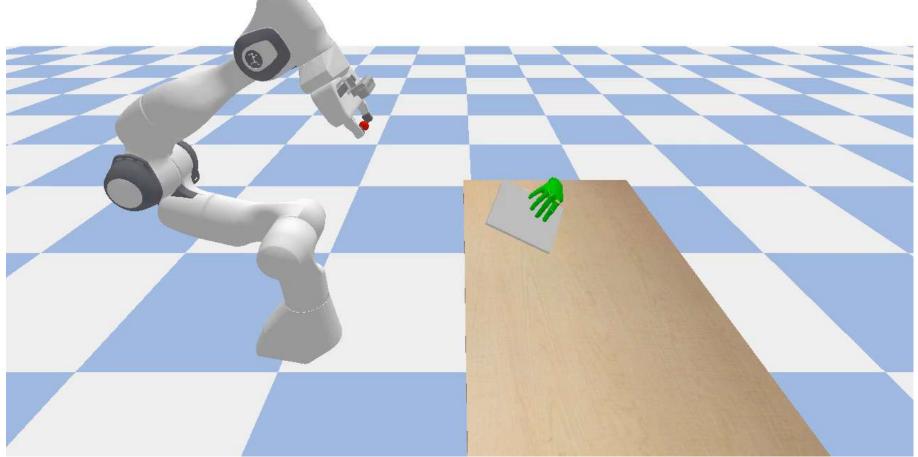
Robot Demonstration: Automatic Grasp and Motion Planning





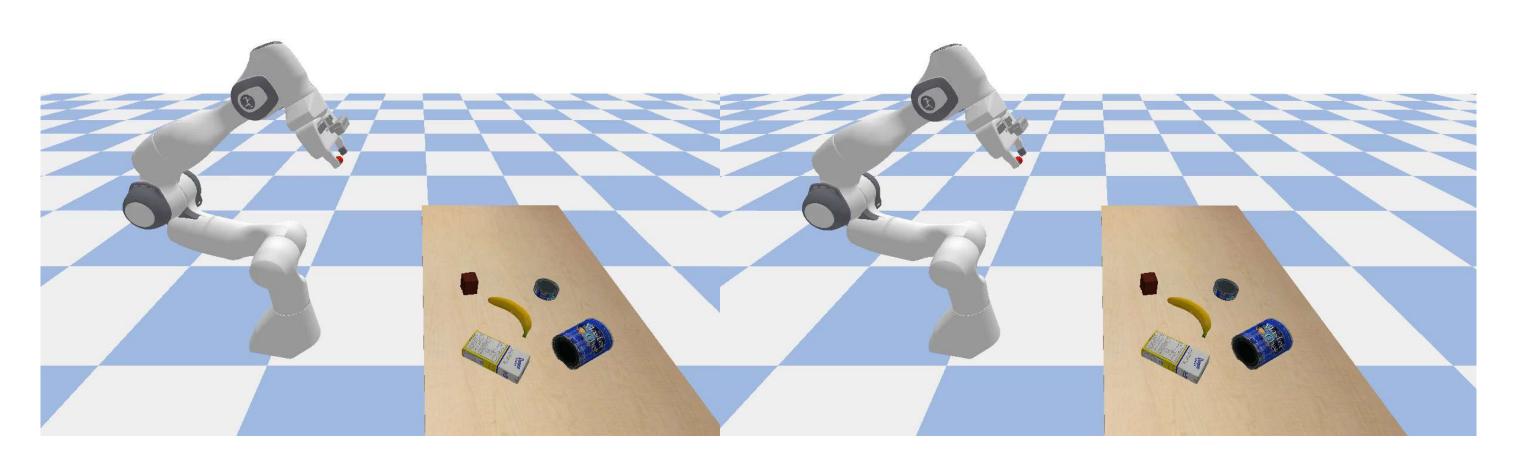
foresighted planner—planning once based on the privileged destination

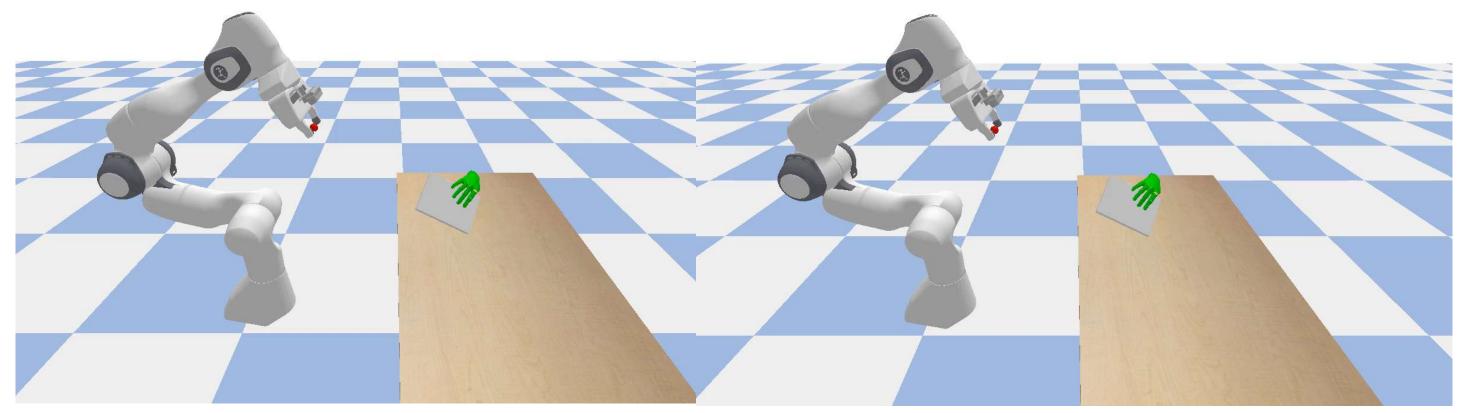




shortsighted planner—planning at each time step using privileged hand and object states

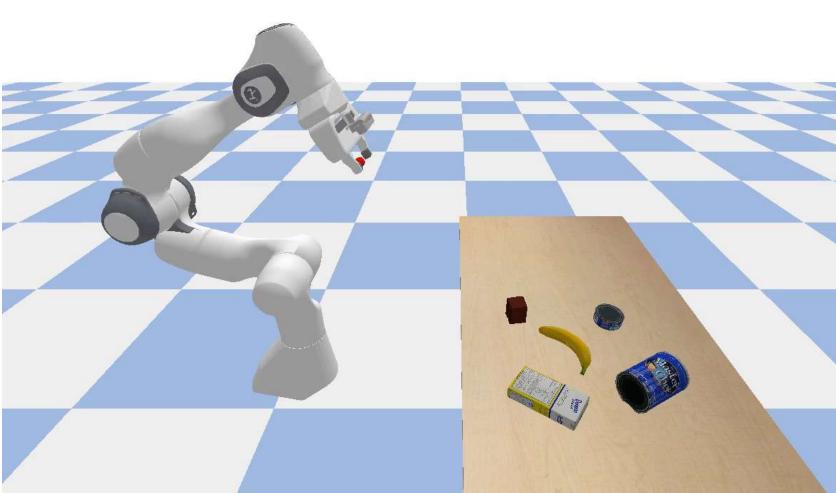
Robot Demonstration: Automatic Grasp and Motion Planning

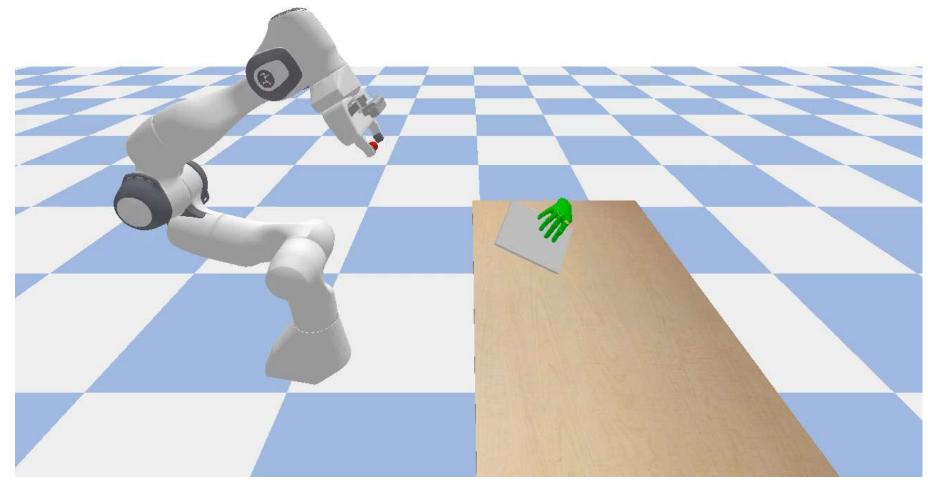




foresighted planner—planning once based on the privileged destination

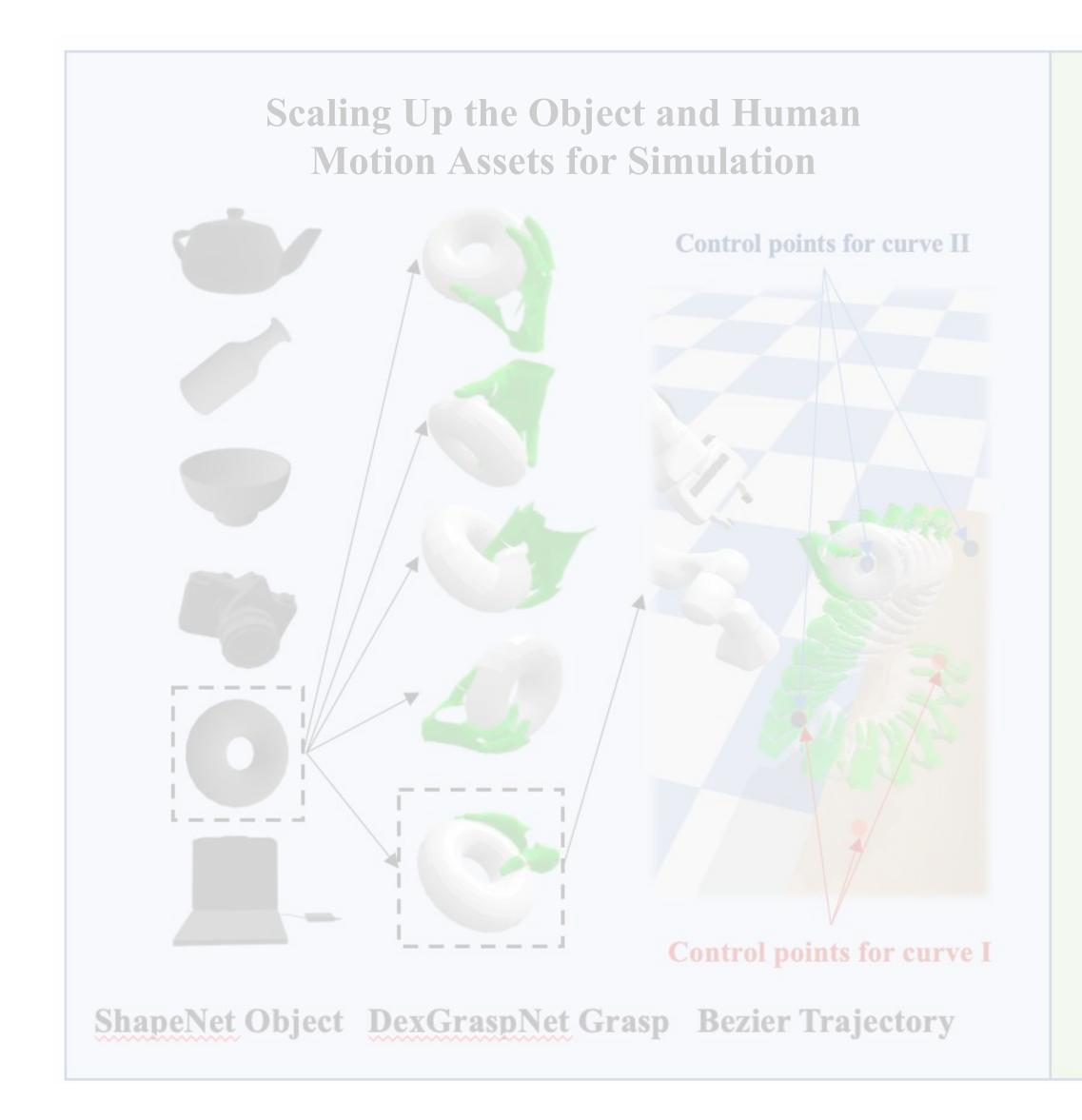
shortsighted planner—planning at each time step using privileged hand and object states

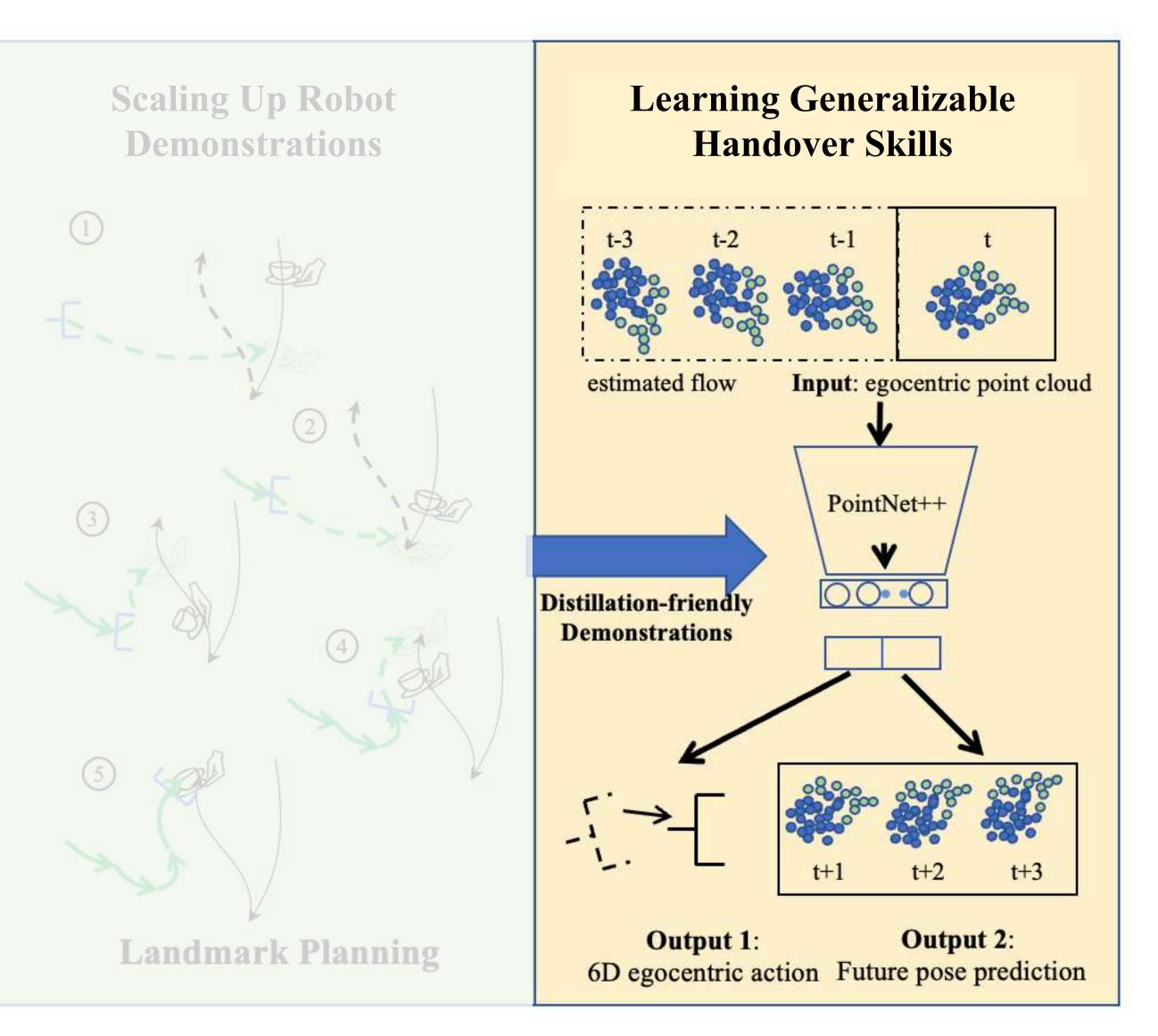




our planner—planning based upon adaptively selected future landmark

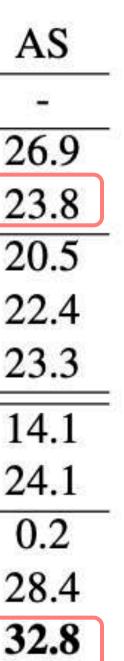
Demonstration Distillation: Forecast-Aided 4D Imitation Learning





Quantitive Comparisons

		s0 (Sequential)		s0 (Simultaneous)		tO			t1				
		S	Т	AS	S	Т	AS	S	Т	AS	S	Т	A
	OMG Planner [7] †	62.50	8.31	22.5		8	-	-	-	-	-	-	14
	GA-DDPG [8]	50.00	7.14	22.5	36.81	4.66	23.6	23.59	7.31	10.3	46.70	5.50	26
train on s0	Handover-Sim2real [3]	75.23	7.74	30.4	68.75	6.23	35.8	29.17	6.29	15.0	52.40	7.09	23
	Destination Planning	74.31	7.98	28.7	76.16	5.89	41.7	25.68	5.34	15.1	48.40	7.49	20
	Dense Planning	74.77	8.14	28.0	75.45	6.06	40.3	27.30	5.49	15.7	52.30	7.44	22
	Landmark Planning	77.78	8.15	29.0	79.17	6.06	42.0	29.63	5.22	17.7	54.20	7.41	23
÷	GA-DDPG [8]	54.86	7.29	24.1	50.69	5.86	27.8	24.05	4.70	15.3	25.50	5.86	14
train on t0	Handover-Sim2real [3]	65.97	7.18	29.5	62.50	6.04	33.5	33.71	5.91	18.4	47.10	6.35	24
	Destination Planning	0.93	11.76	0.1	6.48	11.22	0.9	5.96	7.57	2.5	1.60	11.38	0.
	Dense Planning	80.79	8.59	27.4	86.81	6.41	44.1	39.04	5.81	21.6	64.20	7.24	28
	Landmark Planning	87.27	7.66	35.8	84.03	5.57	48.0	40.43	4.85	25.4	62.40	6.20	32

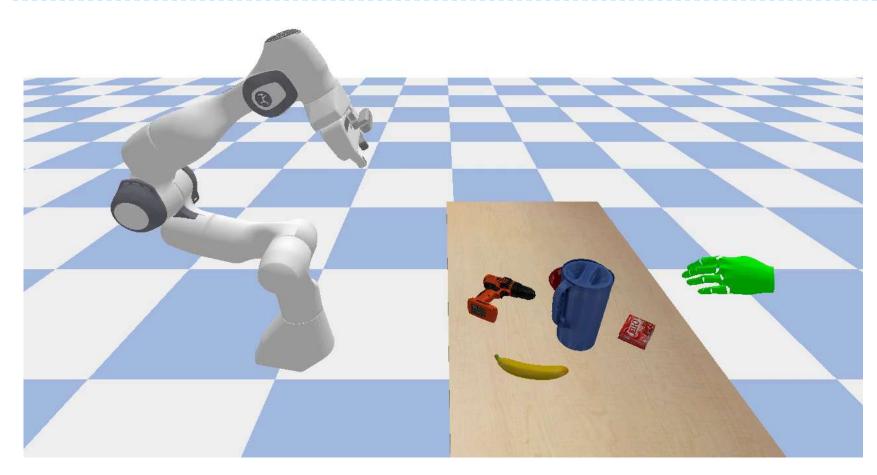


Qualitative Results: Simulation Experiments

(Baseline) HandoverSim2real

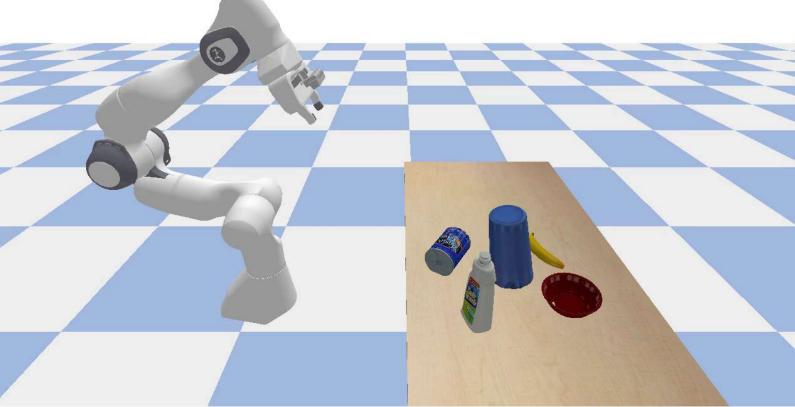
successful rate(%): 75.23

Simultaneous: Robot arm moves together with human hands

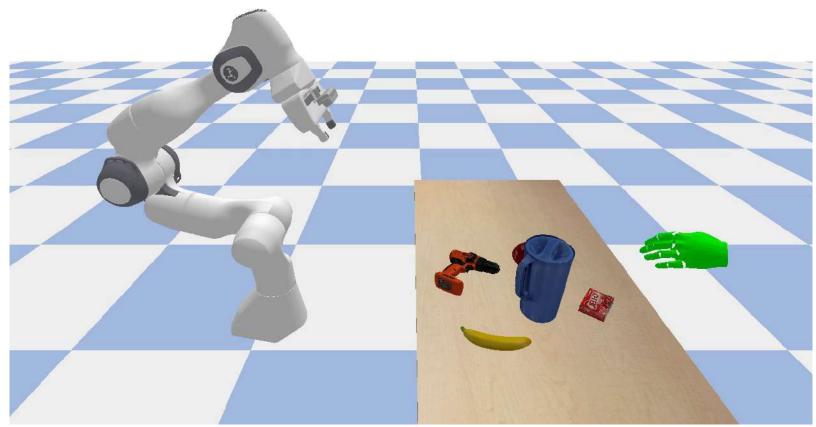


successful rate(%): 68.75

Ours



successful rate(%): 87.27

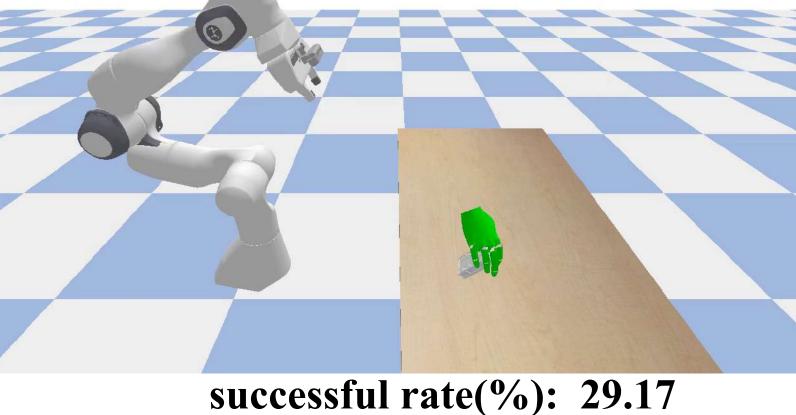


successful rate(%): 84.03

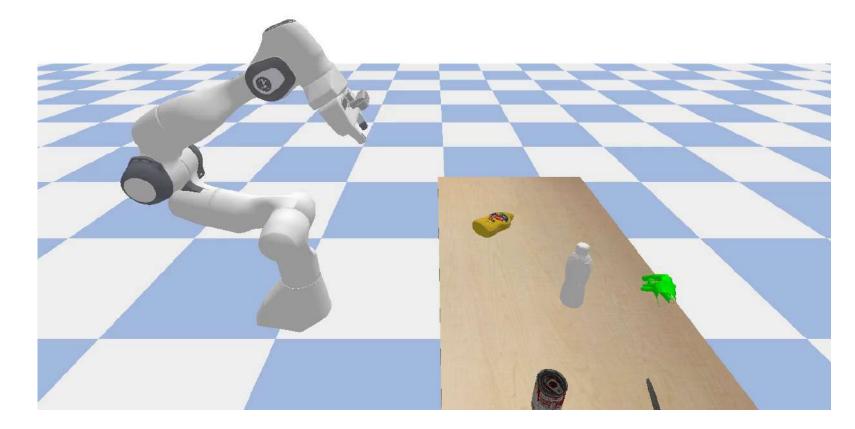
Qualitative Results: Simulation Experiments

(Baseline) HandoverSim2real

Simultaneous: Random human motion

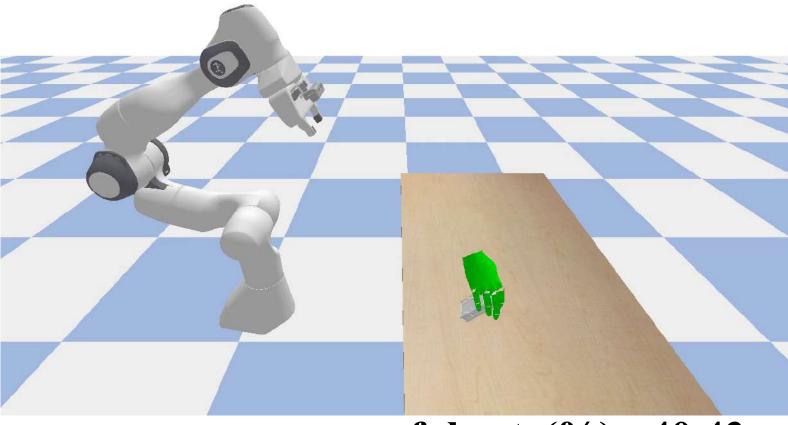


Simultaneous: Human motion from a largescale mocap dataset

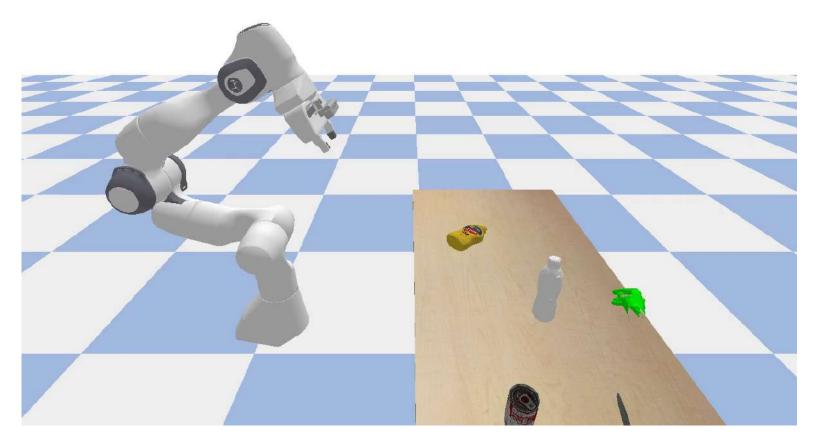


successful rate(%): 52.4

Ours



successful rate(%): 40.43



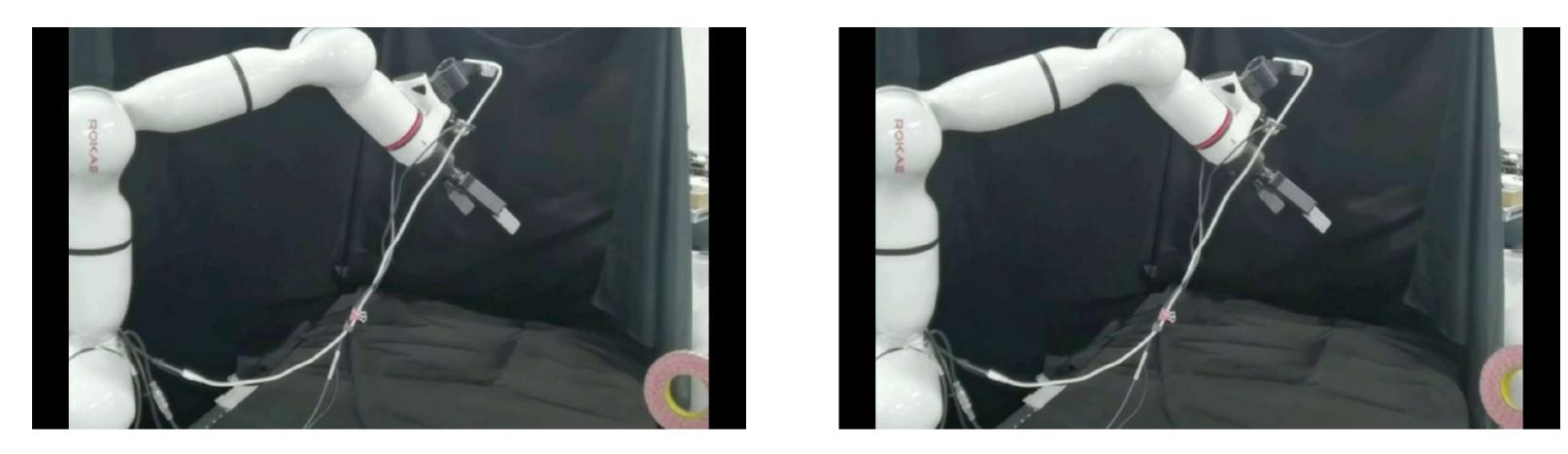
successful rate(%): 62.4

Qualitative Results: Real-world Experiments

(Baseline) GA-DDPG

(Baseline) HandoverSim2real

For more trajectory transitions like rotations, our model demonstrates robustness compared to baseline methods.

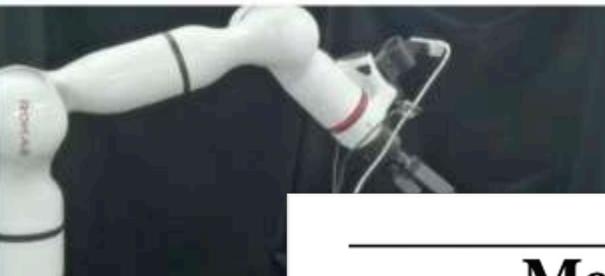


For previously unseen objects with diverse geometries like sticky tapes, our model exhibits greater generalizability.

Ours

Qualitative Results: Real-world Experiments

(Baseline) GA-DDPG



Methods Handover-Sim2real Ours

Sim

For more tr

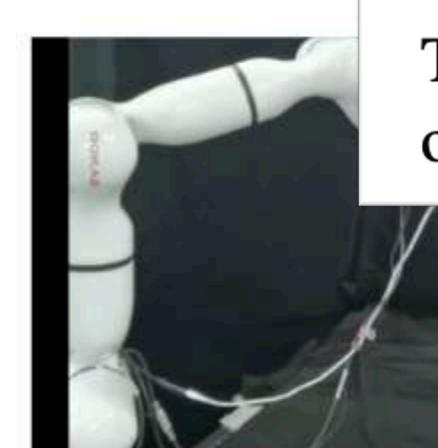


Table 3. Sim-to-Real Experiments. We report the success rate of our method and HandoverSim2real in 2 different settings.

For previously unseen objects with diverse geometries like sticky tapes, our model exhibits greater generalizability.

(Baseline) HandoverSim2real

Ours

ds.

nple Setting	Complex Setting
56.7%	33.3%
90.0%	70.0%



Human-Centered Robot Simulator

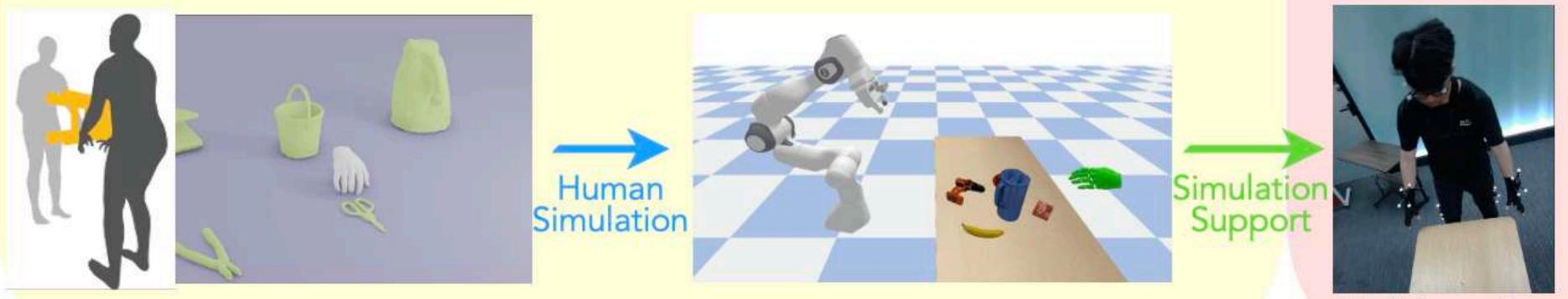
Human Interaction Capturing

Interactable Asset Creation

Human Interaction Synthesis

Police Car Dragon Chair Scissor

Human-Centered Robot Simulator



Asset Support

Visual Perception

Human-Centered Robotics

Collaborative Transport

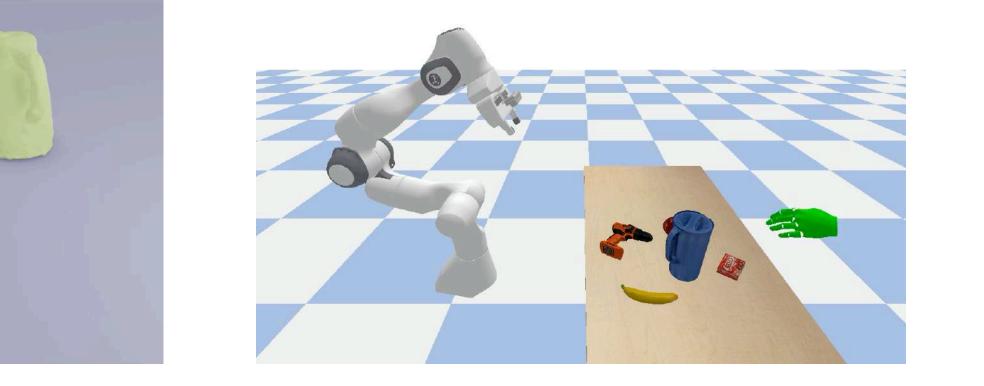
Human-to-Robot Handover

Human-Centered EAI

Open-World Perception

Takeaway: Real-to-Sim-to-Real Solution

Creating Sim from Real

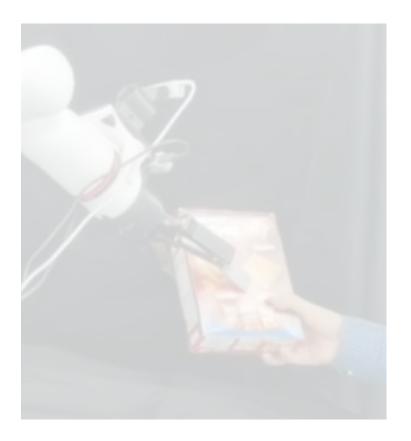


Learning in Sim

Deploying in Real

Embodied Task Execution

Embodied Agent



Handover

