Modelling and Simulating the 3D World for Autonomous Driving

Shenlong Wang

June 8, 2024

1

Modelling and Simulating the 3D World for Autonomous Driving

Shenlong Wang

June 8, 2024

Toward building autonomy that everyone trusts

Autonomy

Flexibility Interact with humans Handle uncertain future

Robustness Handle long-tails events Being failsafe

Scalability Enlarge operational domain Reducing the cost

Verifiable Safety Certifiable correctness Measurable metrics

Realistic Interaction

Safety-Critical Events S

Scalable Evaluation

Realistic Environments

Training, Evaluation and Verification

Image credit: Google, Volvo, Uber

3

Simulation to rescue!

Not closed-loop

Too rare

Costly operation

Simulation: everything comes with a price tag

https://www.reddit.com/r/gamedev/comments/9zdn7a/putting_a_price_tag_on_game_assets_in_a_screenshot/

... and is not realistic enough

Combine the best?

Real-World

Realistic, unsafe, costly in operation, slow

Simulation

Less realistic, safe, costly in design, fast

1: An ideal simulator should be *realistic* and *cost efficient in operation and design*

Key Approach: Modeling and Recreation

Model and Perceive the Physical World

Recreate Experiences

11

Safety-Critical Case

LiDARSim + Close-Loop

Manivasagam, Wang, Wong, Zeng, Ma, Urtasun, CVPR 2020

LidarSim

Real LiDAR

Manivasagam, **Wang**, Wong, Zeng, Ma, Urtasun, CVPR 2020

Input Video

Reconstructed Object

Simulated Results

1: An ideal simulator should be *realistic* and *cost efficient in operation and design*

Harness *real-world data* and *recreate novel experiences*

Adversarial factors beyond actors exist in driving

20

VEHICLE CRASH STATISTICS

2007-2016 AVERAGES

More Than 5,891,000 Vehicle Crashes Per Year

Average of 1,235,145 Vehicle Crashes Involved Hazardous Weather (~21 Percent)

5,376 Deaths Per Year Due to Weather-Related Crashes

Weather.com

2: An ideal simulator should simulate *all possible factors* that matter for driving

What if...

Andreas Geiger, Philip Lenz, Christoph Stiller and Raquel Urtasun, Vision meets Robotics: The KITTI Dataset, IJRR 2013. Yiyi Liao, Jun Xie Andreas Geiger, KITTI-360: A Novel Dataset and Benchmarks for Urban Scene Understanding in 2D and 3D. PAMI 2022

What if... driving at night?

24

What if... driving on a smoggy day?

What if... the street is flooded?

Key Approach: Modeling and Recreation

Model and Perceive the Physical World

Recreate Experiences

Key Approach: Modeling and Recreation

Model and Perceive the Physical World

Recreate Experiences

Snow

Climate Impact

Style image

Multi-view Input Images

Extreme V

Snow

Climate Impact

Multi-view Input Imag

Controllability

Possible to incorporate realistic weather projection

Reconstruction

2: An ideal simulator should simulate all possible factors that matter for driving

2: An ideal simulator should simulate all possible factors that matter for driving

Combine *generative* and *physics-based* models to simulate physical phenomenon

That said, simulation hasn't yet replace real data in training autonomous agents.

That said, simulation hasn't yet replace real data in testing autonomous agents.

3: An ideal simulator should *run faster than reality* and/or *incorporate as many real components as possible*.

Can we turn a video to an interactive environment?

Input: single video

Output: real-time, realistic, interactive environment

Hongchi Xia, Zhi-Hao Lin, Wei-Chiu Ma, Shenlong Wang, Video2Game: Real-time, Interactive, Realistic and Browser-Compatible Environment from a Single Video, CVPR 2024 C

(i) localhost:8080 6

$\forall \mathscr{Y}$ \overleftrightarrow 3 £= A ...

 $\overline{}$

+

Ō

(స్ట) භි

 \times

+

(კე

ණ

-

+

Can we bring simulation back to reality?

Bhargav Chandaka Yuan Shen

Albert Zhai

Zhi-Hao Lin

Sim-on-Wheels Simulation with Real World Physics and Hardware in the loop

https://sim-on-wheels.github.io/

Autonomy Evaluation Experiment

Qualitative Result – Jaywalker with Occlusion

Autonomy Evaluation Experiment

Qualitative Result – Traffic Light Violation

Image Level Comparison

Image Level Comparison

Image Level Comparison

Image Level Comparison

Action Level Comparison

3: An ideal simulator should *run faster than real-time* and/or *incorporate as many real components as possible*.

Game engine compatible and hardware-in-the-loop simulation

Modeling and Recreation

Model and Perceive the Physical World

Recreate Experiences

4: An ideal simulator should scale up to infinitely possible scenarios.

Recap: real-world simulation is limited in diversity

Can we generate digital twin world for driving?

Vlas Zyrianov

Henry Che

Key insights: Generate a 4D world, then make continuous observations within it.

LidarDM, <u>https://www.zyrianov.org/lidardm/</u>

Can we generate digital twin world for driving?

Layout-aware

Realistic

Coherent in space & time

LidarDM, https://www.zyrianov.org/lidardm/

Waymax + LidarDM = Asset Free Simulator!

• 2D Traffic Simulator Scenarios are fed into LidarDM

LidarDM, https://www.zyrianov.org/lidardm/

Waymax + LidarDM = Asset Free Simulator!

• Generate Champs Élysées without visiting France

LidarDM, <u>https://www.zyrianov.org/lidardm/</u>
4: An ideal simulator should scale up to infinitely possible scenarios.

Generate many *digital worlds* and run simulations

Today's talk

A desired driving simulator should

- 1. Use *real-world data* to reduce costs and sim2real gap.
- 2. Cover all possible real-world scenarios that matter for driving.
- 3. Simulate at super-real-time speeds with embodiment.
- 4. Scale with generative AI for endless possibilities.

How much do I trust my simulation results?

Today's talk

A desired driving simulator should

- 1. Use *real-world data* to reduce costs and sim2real gap.
- 2. Cover all possible real-world scenarios that matter for driving.
- 3. Simulate at super-real-time speeds with embodiment.
- 4. Scale with generative AI for endless possibilities.
- 5. Provide trust-worthy evaluation results with certificates / guarantees

Projects summary

- LidarSim (CVPR 2020):
- GeoSim (CVPR 2021):
- SceneGen (CVPR 2021):
- ClimateNeRF (ICCV 2023): https://climatenerf.github.io/
- UrbanIR (arXiv 2024): <u>https://urbaninverserendering.github.io/</u>
- Video2Game (CVPR 2024): <u>https://video2game.github.io/</u>
- Sim-on-Wheels (RA-L 2023): <u>https://sim-on-wheels.github.io/</u>
- NeRF2Physics (CVPR 2024): <u>https://ajzhai.github.io/nerf2physics/</u>
- LidarDM (arXiv 2024): <u>https://lidardm.github.io/</u>
- PhysGen (arXiv soon)

Acknowledgement

Acknowledgement

The Grainger College of Engineering **Center for Autonomy**

The Grainger College of Engineering
Illinois Center for Transportation

Insper