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Fig. 1: MPI is an interaction-oriented representation learning pipeline for robot manipulation. Diverging from prior arts grounded
in (a) Contrastive Learning (R3M [38]), (b) Masked Signal Modeling (MVP [42]), or (c) Video Prediction [51] using random
frames, our proposed approach in (d) instructs the model towards predicting transition frames and detecting manipulated objects
with keyframes as input. As such, the model fosters better comprehension of “how-to-interact” and “where-to-interact”. MPI
acquires more informative representations during pre-training and achieves evident improvement across downstream tasks.

Abstract—Representation learning approaches for robot ma-
nipulation have boomed in recent years. Due to the scarcity of
in-domain robot data, prevailing methodologies tend to leverage
large-scale human video datasets to extract generalizable features
for visuomotor policy learning. Despite the progress achieved,
prior endeavors disregard the interactive dynamics that capture
the patterns of behavior and physical interaction during the
manipulation process, resulting in an inadequate understanding
of the relationship between objects and the environment. To
this end, we propose a general pre-training pipeline that learns
Manipulation by Predicting the Interaction (MPI) and enhances
the visual representation. Given a pair of key frames representing
the initial and final states, along with language instructions, our
algorithm predicts the transition frame and detects the interac-
tion object, respectively. These two learning objectives achieve
superior comprehension towards “how-to-interact” and “where-
to-interact”. We conduct a comprehensive evaluation of four chal-
lenging robotic tasks. The experimental results demonstrate that
MPI exhibits remarkable improvement by 10% to 64% compared
with previous state-of-the-art in real-world robot platforms as
well as simulation environments. Inference code and checkpoints
are publicly shared at https://github.com/OpenDriveLab/MPI.

I. INTRODUCTION

Visuomotor control of robotic systems entails perceiving
and interpreting the surrounding environment from visual
inputs, making informed decisions, and executing appropriate
actions. This capability is of great significance to a wide range
of robotic applications, encompassing object manipulation [3],
grasping [57], navigation [47, 48, 52], etc. Motivated by
the achievements of large-scale pre-training in fundamental
vision [24, 25, 41] and natural language processing [12, 45],
the field of robotics seeks to utilize large-scale datasets to
build generalizable representations. However, for robot manip-
ulation, collecting demonstrations proves to be both laborious
and costly. Consequently, the exploration of representation
learning methodologies that circumvent dependence on limited
in-domain robotics data has emerged as a prominent and
trending research focus.

Within the realm of robotics, recent efforts [26, 38, 42]
have harnessed large-scale egocentric human video datasets,
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such as Ego4D [19], Something-Something-v2 [18], and Epic
Kitchens [8], to bootstrap representation learning for robot ma-
nipulation. As depicted in Fig. 1(a)-(b), previous approaches
extensively employ contrastive learning [34, 38] and masked
signal modeling [26, 38, 42]. While these approaches offer
valuable insights for enhancing the performance of robotic
systems in downstream tasks, their primary focus tends to
be directed either toward discerning high-level semantic cues
or capturing fine-grained pixel information. Regrettably, they
overlook crucial interactive dynamics, which refers to the pat-
terns of behavior and physical interactions that occur between
a robot and the environment.

In most contexts where robotic systems are deployed, their
functions extend beyond passive perceptual capabilities [43]
to active engagement with the environment [3, 61]. This
prompts an exploration of how to connect interactions that
shape the world and visual representations that speak the
world. One viable approach in this regard is video prediction
pre-training [51], as depicted in Fig. 1(c). Through learning to
predict future frames, the model inherently acquires the ability
to represent the temporal evolution of scenes [2]. However,
in the specific context of robot manipulation scenes, objects
typically do not exhibit autonomous movement, and scene
changes primarily arise from interaction-driven movements.
Conventional approaches [16, 21] for predicting future consec-
utive frames merely model the temporal relationships between
frames. This task setting is less challenging and prone to
introducing noise or redundant information, thus hindering
the model’s ability to discern interaction-relevant patterns or
effectively capture the dynamic interactions in manipulation
scenarios [14]. Therefore, it is imperative to propose an
enhanced interaction-oriented video prediction method.

To address the aforementioned challenges, we propose MPI,
which stands for learning Manipulation by Predicting the
Interaction. As shown in Fig. 1(d), we formulate two primary
objectives, which are also key elements that formulate an
interaction, summarized as “how-to-interact” and “where-to-
interact”. Correspondingly, we propose two modules: Predic-
tion Transformer and Detection Transformer. Given a pair
of key frames representing the initial and final states of an
interaction process, along with a language instruction, the
Prediction Transformer predicts the unseen transition frame
that represents the interaction between these two states. By
employing this objective, the model comprehends “how-to-
interact”. Moreover, the Detection Transformer infers the
location of the interaction object in the unseen frame, enabling
the model to acquire knowledge of “where-to-interact”. As
illustrated in Fig. 2, within a transformer-based encoder-
decoder architecture, we leverage a set of prediction queries
to estimate the transition frame and a detection query to infer
the position of the interaction object. Conditioned on language
input, the knowledge across the transition frame prediction and
interaction object detection is woven through cross-attention
among queries, fostering mutual support in the training pro-
cess. As such, we construct a unified prediction-detection pre-
training framework tailored for robot manipulation. In contrast

to predicting future consecutive frames, our algorithm filters
out the interaction-irrelevant information and emphasizes the
key states, leading to a concentrated learning process.

To evaluate the effectiveness of our proposed MPI, we
assemble a set of downstream tasks: 1) policy learning on
a real-world Franka Emika manipulator operating in complex
scenarios; 2) policy learning on Franka Kitchen [20] within
a complex kitchen environment; 3) manipulation of unfixed
objects in Meta-World [56] simulation environment; 4) and
a robotics-related recognition task (i.e., referring expression
grounding [50]), in which the model locates a specified object
based on natural language descriptions. Extensive experimen-
tal results demonstrate the superior performance of our method
compared to R3M [38], MVP [42], and Voltron [26].

Contributions. Our contributions are three folds: 1) We
propose an interaction-oriented representation learning frame-
work, MPI, towards robot manipulation. By learning interac-
tion, MPI strengthens the model’s comprehension of inter-
active dynamics in manipulation scenes. 2) We propose the
Prediction and Detection Transformer to predict the transition
frame and detect the interaction object. These two learning
objectives facilitate the model to foster an understanding
of “how-to-interact” and “where-to-interact”. Moreover, these
two learning objectives can be mutually reinforced. 3) The
experimental results reveal that MPI yields state-of-the-art
performance on a broad spectrum of downstream tasks.

II. RELATED WORK

A. Representation Learning for Robotics

Effective visual representation plays a crucial role in facili-
tating robots’ interaction with the environment [5, 22, 53, 55].
Given the limited availability of in-domain robot data, current
methods attempt to leverage pre-trained visual models to en-
hance the generalizability of representations, thereby benefit-
ing downstream manipulation tasks [38, 42]. Previous studies
have demonstrated the utility of pre-trained models on general
vision datasets such as CLIP [41] and ImageNet [10] for im-
proving performance on downstream robotic tasks [27, 40, 49].
To further enhance these representations, recent efforts [38, 42]
have focused on pre-training visual models using large-scale
egocentric datasets [18, 19], aiming to bridge the gap between
pre-trained representations and downstream robotic scenarios.
In terms of pre-training techniques, innovative learning ap-
proaches have been adopted to abstract these representations
for robotics. For instance, TCN [46] and VIP [35] propose
time-contrastive learning to understand action sequences over
time, while the recent work MVP [42] employs masked image
modeling method MAE [25] for fine-grained object recogni-
tion. Drawing inspiration from advancements in multi-modal
foundation models [31], recent studies such as R3M [38],
Voltron [26], and LIV [34] bring language into the pre-training
to improve semantic comprehension for robotic tasks.

Recently, there are interesting attempts on the practical
effectiveness of representation learning using ego-centric hu-
man data [4, 9]. In Burns et al. [4], models pre-trained
on manipulation-relevant data do not generalize better than
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Fig. 2: The pipeline for pre-training. MPI comprises a multi-modal transformer encoder and a transformer decoder designed
for predicting the image of the target interaction state and detecting interaction objects respectively. We achieve synergistic
modeling and optimization of the two tasks through information transition between the prediction and detection transformers.
The decoder is solely engaged during the pre-training phase while deprecated for downstream adaptations.

those trained on standard pre-training datasets. Based on
the MAE pre-train paradigm, Dasari et al. [9] demonstrate
that representations derived from traditional computer vision
datasets such as ImageNet outperform those derived from
Ego4D. However, we argue that the experimental phenomena
arises because previous literature solely applies existing pre-
training techniques to large-scale egocentric datasets, without
explicit consideration of the interaction characteristics during
manipulation processes. As such, they fail to fully utilize the
advantages of modeling temporal relationships and interaction
in manipulation-related datasets. In this work, we incorporate
interaction-oriented learning to embed representations with
manipulation task-specific knowledge, aiming to enhance per-
formance in downstream robotic applications.

B. Learning Interaction in Robotics

Gaining a comprehensive understanding of interaction is
essential for effectively manipulating objects. Past research on
learning interaction can be broadly classified into two main
categories: explicit representation and implicit encoding.

Explicit Representation. Within the field of robotics, affor-
dance [17] refers to the properties of an object that enable
specific interactions, i.e., a perceptual cue for object manip-
ulation. Previous works have explicitly expressed interaction
information by estimating affordance, which can take various
forms, including contact points [30], grasp point pairs [57],
or heatmaps [7, 29, 36]. By leveraging internet videos of
human behavior, Bahl et al. [1] train a visual affordance model
capable of predicting contact point and trajectory waypoints,
which explicitly represent the locations and manners in which
humans interact within a scene. Building upon such affor-
dances, SWIM [37] constructs affordance-space world models
that enable robots to learn manipulation skills. In our proposed
pipeline, interaction object detection can be viewed as an
explicit representation utilized for supervision.

Implicit Encoding. Given the increasing prevalence of video
generation and synthesis, recent research has investigated the
potential of applying advanced diffusion techniques to robot
manipulation tasks, aiming to model the interaction process
implicitly. Approaches such as UniPI [15] leverage internet
data and treat the sequential manipulation decision-making
problem as a text-conditioned video generation problem. They
train a separate inverse dynamics module to estimate actions.
Additionally, UniSim [54] aims to develop a universal simula-
tor for simulating the interaction process and training various
policies through generative modeling. Instead, our method
focuses solely on utilizing the image reconstruction task to
guide the representation to incorporate interactive dynamics.

III. MPI: MANIPULATION BY PREDICTING INTERACTION

The overall pipeline of our approach is depicted in Fig. 2.
We begin with a triplet of keyframes that represent the initial,
transition, and final states in an interaction process. Two of
these frames are utilized as inputs for the visual encoder, while
the remaining frame acts as the prediction target. To establish
the state transition relationship between the input frames,
we incorporate a causality modeling module that facilitates
dynamic attention between the two states. Furthermore, a
language description that corresponds to the entire interaction
process is employed to provide high-level semantic cues,
subsequently conditioning the decoding process for the target
state. A shared token aggregator is devised to generate a
concise embedding vector by combining the encoded vision
and language representations.

In terms of the decoder, we configure the Prediction
Transformer and Detection Transformer for interaction frame
prediction and interaction object detection. The information
exchange between these two modules allows the model to
establish potential relationships between “how-to-interact” and
“where-to-interact”, thereby optimizing both objectives.



A. Data: A Triplet of Key Frames

Based on the annotations provided in the Ego4D Hand-
Object Interaction dataset [19], we define three key frames
denoted as {Finit, Ftrans, Ffinal} ∈ R3×H×W . These frames
represent the initial, transition, and final states of an interaction
process. The initial state serves as the starting point and es-
tablishes the contextual foundation for the interaction process.
Therefore, Finit is consistently used as the input during pre-
training. The selection between Ftrans and Ffinal is subject to a
Bernoulli distribution parameterized by p ∈ [0, 1]:

Finput =

{
[Finit, Ftrans], if α = 0,

[Finit, Ffinal], if α = 1,
(1)

where α ∼ Bernoulli(p). Predicting the final state conditioned
on the given motion endows our model with the ability
to estimate consequences. On the other hand, predicting a
transition state enhances the understanding of the causality
involved in state transitions. By learning these two situations
simultaneously during training, the model fosters a holistic
comprehension of “how-to-interact” and “where-to-interact”.

B. Encoder: Representation of Interactive Dynamics

Decoupled Multi-modal Encoder. The multi-modal encoder
plays a central role in learning representations, as illustrated
by the components highlighted in light blue and orange in
Fig. 2. For our visual encoder design, we adhere to the
established Vision Transformer (ViT) framework [13]. The
input frame Fi is divided into non-overlapping patches with
window size s, and then transformed into a sequence of visual
embeddings v ∈ RLvis×d suitable for processing by ViT. Here,
Lvis represents the length of the visual embedding, and d
stands for feature dimension. The value of Lvis is equal to
the number of divided windows HW/s2, where H and W
denote the height and width of the input frame accordingly.

In line with Voltron [26], we adopt DistillBERT [45] as the
language encoder. The language description of the interaction
process is initially tokenized into a sequence of numerical
identifiers based on their position within a predefined vocab-
ulary set V , and then padded to the maximum length Llang.
Consistent with previous multi-modal representation learning
frameworks [26, 38], the language encoder remains frozen
(without parameter updates). In addition, our visual encoder
and language encoder and decoupled, enabling the omission
of language input in downstream tasks.

Causality Modeling. The causality modeling module takes
as input the visual embedding {v0, v1} ∈ RLvis×d from two
parallelly encoded frames. The embedding corresponding to
the initial state is used as queries, while the subsequent state
serves as both keys and values. These encoded frames undergo
processing through a deformable attention layer [59] to capture
patch-to-patch relations. This process can be elucidated as:

v′0 = DeformAttn(Q = v0,K = V = v1),

v = Norm(v0 + v′0).
(2)

The merged visual representation v ∈ RLvis×d, which en-
codes causality relationships between the input states, is then
leveraged in the decoder. In addition, this module reduces the
computational burden in subsequent stages by combining the
embeddings of the two frames into a unified representation.
For downstream adaptations with single-image input, we sim-
ply replicate image features from the Vision Transformer (ViT)
to generate inputs for this module.

Token Aggregator. We introduce the token aggregator, which
is motivated by two primary considerations: 1) To address
the challenge posed by disparate lengths between visual and
language embeddings {v, l}, we aim to enable vision encoders
to generate language-aligned, semantic-rich features by min-
imizing the distance between aggregated tokens {ṽ, l̃}, and
2) By employing aggregated tokens as concise representations
for downstream tasks, we facilitate fair comparisons with prior
methods [38, 42] that inherently rely on aggregated features.

As discussed in Voltron [26], multiheaded attention pooling
(MAP) [28] proves to be significantly more effective com-
pared to alternative prevalent approaches, such as the [cls]
token [42] or global pooling [38], for deriving compact repre-
sentations from a sequence of feature embeddings. Following
this insight, we also employ a MAP block, shared between
vision and language representations, to extract aggregated
tokens. The aggregation process begins with employing zero-
initialized latent embedding vectors, denoted as {ṽ, l̃} ∈ Rd

for vision and language, respectively. Taking the visual part
as an example, this process can be formulated as follows:

ṽ = Norm(ṽ + Attn(Q = ṽ, K = V = v)),

ṽ = Norm(ṽ + MLP(ṽ)).
(3)

C. Decoder: Prediction and Detection

Prediction Transformer. The detailed structure of the Pre-
diction Transformer is shown in deep blue on the right
side of Fig. 2. Given visual and language embeddings from
the encoder, the Prediction Transformer is responsible for
predicting the pixels of the frame that represent the unseen
interaction state. In contrast to the original MAE [25] where
queries are used to represent masked regions in the input
image, our prediction process starts with a set of randomly
initialized queries qpred ∈ RLvis×d, which correspond to each
patchified window of the target frame. To obtain the necessary
information for accurate prediction, we perform cross-attention
between the visual and language embeddings {v, l} and use
qpred as the queries. Additionally, we enhance the prediction
queries by incorporating semantic information related to the
interaction object, as encapsulated in the detection query qdet,
using a bidirectional attention mechanism. After the itera-
tive processing within the multi-layer decoder, the prediction
queries are linearly projected (with F) to generate pixel-level
prediction results denoted as F̂ pred = F(qpred) ∈ R3×H×W .

Detection Transformer. Taking into consideration the object-
centric nature of an interaction process [11], we introduce a
detection query qdet ∈ Rd to locate the interaction object, as



highlighted in purple in Fig. 2. To expedite training conver-
gence, we initialize the detection query with the aggregated
visual embedding ṽ. It is noteworthy that the detection query
is designed to regress the object location mainly based on
the information inferred from the prediction queries qpred,
which we expect to contain comprehensive information about
the target state. The exchange of information occurs through
bidirectional attention between the two sets of queries. A
subsequent two-layer multi-layer perceptron (MLP) is applied
to obtain the regression box: b̂det = MLP(qdet) ∈ R4.

Our empirical analysis reveals that, despite the slow conver-
gence observed in the early training phases due to inadequately
informative representations on both ends, the transmission of
query information facilitates eventual convergence for both
tasks. The integrated modeling and optimization of these two
tasks synergistically enhance the model’s capacity to acquire
a more effective representation for robot manipulations.

D. Optimization Objectives

The primary objective of our proposed framework during
pre-training is to predict the unseen state and detect interaction
objects, which are framed as “how-to-interact” and “where-to-
interact”, respectively. For target frame prediction, we utilize
mean-squared error as the loss function, while for detection,
we supervise with L1 loss and GIoU loss [44]. Furthermore,
our preliminary experiments demonstrate that incorporating
contrastive loss Lcon between aggregated visual and language
embeddings (i.e., ṽ and l̃) improves representation learning.
In summary, our pre-training framework aims to minimize the
following components of loss:

Lpred = MSE(F̂pred, Fgt),

Ldet = L1(b̂det, bgt) + GIoU(b̂det, bgt),

Lcon = InfoNCE(ṽ, l̃),
L = λ1Lpred + λ2Ldet + λ3Lcon,

(4)

where Fgt represents the target frame, bgt denotes the bounding
box annotation, and λ1, λ2, λ3 are balancing factors for the
different learning objectives. The InfoNCE loss [39] employs
cosine similarity as the distance measure.

IV. EXPERIMENTS

A. Evaluation Suites

We have devised a comprehensive evaluation suite con-
sisting of four robot learning tasks. Specifically, the suite
comprises the following components:

1) Visuomotor control on real-world robots (Sec. IV-C1):
This task aims to validate the applicability of our pro-
posed method in various tasks in real-world scenarios,
assessing the generalization capabilities under scenarios
involving background distraction and object variation.

2) Visuomotor control on Franka Kitchen (Sec. IV-C2): In
this task, we benchmark the performance of our ap-
proach in complex simulation environments, comparing
it against the previous state-of-the-art.

3) Visuomotor control on Meta-World (Sec. IV-C3): The
target is to verify the ability to identify interaction ob-
jects with unfixed locations and perform manipulation.

4) Referring expression grounding (Sec. IV-D): This task
evaluates the representation of object-centric semantics
and spatial relationships conditioned by language.

Following the established practice in previous literature [26,
38, 42], each evaluation includes adaptation data and evalu-
ation metrics. We evaluate MPI and various baseline models
by freezing the pre-trained vision encoders and adapting task-
specific “heads” on top of the extracted representations. In the
following sections, we provide the rationale for selecting each
evaluation task and present the corresponding experimental
results. Furthermore, we delve into ablations on pre-training
paradigms and model designs in Sec. IV-E.

B. Pre-training Details

Due to the labor-intensive nature of collecting robot manip-
ulation data, we leverage large-scale egocentric human video
datasets tasks as a source for pre-training. Instead of using
the entire Ego4D dataset [19], we only utilize the hand-
object interaction subset. This dataset contains recordings of
dynamic interaction processes during manual manipulation,
captured using a head-mounted camera. Each video clip is
accompanied by a textual description of the ongoing action.
Additionally, the dataset annotates keyframes that capture
critical moments, including the pre-change, change onset, and
post-change states, which we refer to as the initial, transition,
and final states in our paper. The bounding box annotations for
the interaction objects in these three frames are also provided.
We select 93K video clips for pre-training.

All models are pre-trained on 8 NVIDIA A100 GPUs. The
ViT-Small version is trained for 200 epochs, using an initial
learning rate of 1e-4 and a batch size of 64 per GPU. We
choose the AdamW [33] optimizer. No data augmentation is
applied. Training ViT-Small versions take approximately 15
hours. The ViT-Base version follows most of the same settings
as the small version but is trained for a total of 400 epochs. In
our experiments, we assign uniform weights for the loss terms,
specifically, λ1, λ2 and λ3 equal to 1, without adjustments for
performance improvement. Further implementation details can
be found in the Appendix, and we will release the codes and
models publicly for reproduction purposes.

C. Evaluations on Visuomotor Control

1) Real-world Robots
Motivation. In order to authentically assess the effectiveness
of various visual representation learning approaches for en-
abling efficient robotic learning in real-world environments,
we have introduced a series of manipulation tasks.

Evaluation Details. In the deployment of a Franka Emika
Panda robot for a series of tasks, we employ a 3D SpaceMouse
to collect 10 teleoperated demonstrations for each task. An
Operational Space Controller operating at 20Hz, as detailed in
Deoxys [60], is utilized. In the evaluation phase, we use the
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Fig. 3: Real-world robot experiments. (a) Illustrations of real-world experiments in the kitchen environment. (b) Detailed
success rate of ten tasks within a clean background. (c) Results of five tasks in the complex kitchen environment. (d) MPI
outperforms previous state-of-the-art with an average elevation of 26.3% success rate across 15 tasks.

frozen visual encoder to extract visual representations. These
visual representations are then concatenated with the robot’s
proprioceptive state as inputs to a shallow MLP policy head.
The objective is to predict continuous delta end-effector poses
through action chunking [58]. To ensure fair comparisons with
prior works [38, 42], we solely employ the aggregated visual
embedding without any language interference. Each task is
conducted 20 times, and we report the average success rate.

To provide a comprehensive evaluation of the effectiveness
of different pre-trained encoders, we design two distinct sce-
narios with varying levels of complexity. The first scenario
consists of ten diverse manipulation tasks in a clean back-
ground. These tasks include 1) putting the orange into the
basket, 2) stacking the block, 3) picking up the ice cream,
4) closing the laptop, 5) scanning code, 6) watering roses, 7)
putting the croissant on the plate, 8) picking up the bread, 9)
pushing the block, and 10) putting the pepper on the plate.
These tasks require fundamental manipulation skills such as
Pick & Place, articulated object manipulation, etc.

In addition, we construct a more challenging kitchen en-
vironment that incorporates various interfering objects and
backgrounds relevant to the target tasks. In this environment,
we present five tasks: 1) taking the spatula off the shelf, 2)
putting the pot into the sink, 3) putting the banana into the
drawer, 4) lifting the lid, and 5) closing the drawer. As shown
in Fig. 3(a), the complexity of these scenarios necessitates
the visual encoder to possess both the “how-to-interact” and
“where-to-interact” abilities to effectively handle these tasks.

Experimental Results. The results for tasks conducted in a
clean background are presented in Fig. 3(b). While certain
models exhibit superior performance in specific tasks (e.g., the
Voltron excels in the “scan code” task), they fail to consistently

(a) Original Setting

(b) BG. Distraction

(c) Obj. Variation

Robustness to Visual 
Distractions

Fig. 4: Illustration of real-world validation on generaliza-
tion to (b) background (BG.) distraction when we put a banana
into the drawer, and (c) object variation when we lift the lid.

maintain high performance across all tasks. In contrast, MPI
directs its focus towards the interactive objects and attains a
more broadly applicable representation, consequently yielding
consistently elevated performance across a spectrum of tasks.

Within the more challenging kitchen environment, as shown
in Fig. 3(c), MPI exhibits outstanding performance across
all manipulation tasks. Notably, it demonstrates particular
proficiency in tasks that require precise object perception to
interact with small objects, such as the “lift the lid” and the
“take spatula off”. Overall, as demonstrated in Fig. 3(d), MPI
surpasses prior approaches, leading to an average success rate
increase of 26.3% across a broad spectrum of 15 tasks.

Generalization to background distraction and object vari-
ation. To assess the generalization capability and robustness of
visual representations, we design two distinct scenarios within



TABLE I: Evaluation on generalization to background
distraction and object variation. MPI performs best in terms
of success rate (%) under interferences nonetheless, benefiting
from the robust representations it learns.

Method Put banana into drawer Lift up the lid
Original Distraction Original Variation

DINO [6] 55 35 (↓36.4%) 35 20 (↓42.9%)
R3M [38] 35 25 (↓28.6%) 30 15 (↓50.0%)
MVP [42] 40 25 (↓37.5%) 30 15 (↓50.0%)
Voltron [26] 55 25 (↓54.5%) 45 20 (↓55.6%)

MPI (Ours) 60 55 (↓8.3%) 80 50 (↓37.5%)

TABLE II: Evaluation on generalization to object position
and lighting condition. MPI performs best in terms of
success rate (%) under various interferences. ∗We incorporate
variations in lighting along with shifts in position.

Method Object Position ∗Lighting Condition

Voltron [26] 30 0
MVP [42] 40 20

MPI (Ours) 60 30

the complex kitchen environment. The first task involves
placing a banana into a drawer. We introduce background
distractions by replacing daisies with roses, as illustrated in
Fig. 4(b). In Fig. 4(c), we conduct another task: lifting up the
pot lid, where we substitute the white pot with a wooden one.

The results are in Table I. It is evident that all existing
approaches suffer degraded performance when encountering
out-of-distribution situations. However, MPI demonstrates re-
markable robustness against such disturbances, experiencing
merely a modest 8.3% decrease in the presence of background
distraction and a minimum drop of 37.5% in object variation.
These results validate the generalizability of our method to
unseen environments and manipulation objects.

Generalization to object position and lighting condition. To
further validate the generalization ability, we benchmark MPI
with other literature. We select “put banana into basket” as the
ablation task and collect 100 demonstration trajectories, where
the banana tails are randomly positioned in a 16cm × 16cm
rectangular region. Evaluations are conducted at ten marked
locations to ensure consistency and fairness across different
methods. For instance, we regulate the tails of bananas point-
ing at ten marked points during inference. Detailed settings
are depicted in the Appendix. The success rates are reported in
Table II. Our approach surpasses Voltron by a notable margin
regardless of object position variation or lighting condition
variation. Note that the prevailing alternative, MVP, still falls
short against these variations in the real-robot setting.

2) Franka Kitchen
Motivation. Previous studies [26, 38, 42] have established
imitation learning for visuomotor control in simulation as the
standard evaluation method. This enables direct comparisons

Turn the stove top knob

Slide the right
door open

Turn on the light

Open the microwave Open the left door

Fig. 5: Franka Kitchen simulation environment defined by
Nair et al. [38]. In this environment, we include tasks of
turning the stovetop knob, opening the microwave, sliding the
right door open, turning on the light, and opening the left door.
All tasks are trained with 25 demonstrations.

with prior works and focuses on assessing the sample-efficient
generalization of visual representations and their impact on
learning policies from limited demonstrations. We conduct this
evaluation to compare the capabilities of different representa-
tions in acquiring both the knowledge of “where-to-interact”
and “how-to-interact” in complex simulation environments.

Evaluation Details. For the complex simulation environment,
we adopt the policy learning tasks depicted in Fig. 5 within
the Franka Kitchen simulation environment as defined by Nair
et al. [38]. This environment consists of five distinct tasks,
each observed from two camera viewpoints. To predict 9-
DoF joint velocities (7 joints and 2 grippers) based on visual
representations and proprioceptive states (i.e., joint velocities),
we train shallow MLP policy networks for methods with
a ResNet50 backbone and modified multiheaded attention
pooling (MAP) [28] for those with a ViT backbone. Following
the means of Nair et al. [38] and Karamcheti et al. [26], we
calculate the average success rates for each setting across the
5 tasks, 2 viewpoints, and 3 random seeds. We train a separate
policy head for each task to imitate RL experts and use Nair
et al. [38]’s codebase. Further discussions about the structure
of policy networks are provided in the Appendix.

Experimental Results. The results of single-task visuomotor
control in the Franka kitchen are listed in Table III. Notably,
representation learning frameworks tailored for robot manipu-
lation exhibit a discernible superiority over two widely adopted
visual pre-training methods in the realm of computer vision:
ImageNet [10] classification and CLIP [41] contrastive pre-
training. While prior methodologies demonstrate comparable
performance, our implementations, built upon both smaller
and larger variants of visual backbone, showcase a significant
advantage over our counterparts. In particular, MPI with
the ViT-Small architecture yields a noteworthy enhancement
of +6% in average success rate compared to the leading
precedent Voltron [26]. This improvement becomes even more
pronounced with the utilization of the ViT-Base backbone, re-



TABLE III: Results of single-task visuomotor control on Franka Kitchen. We report the success rate (%) over 50 randomly
sampled trajectories. We bold the best result for models with similar parameters and underline the second. “INSUP.” represents
classification-based supervised learning on ImageNet. MPI consistently exhibits superior performance across multiple tasks.

Method Backbone Param. Turn knob Open door Flip switch Open microwave Slide door Average

INSUP. [23] ResNet50 25.6M 28.0 18.0 50.0 26.7 75.7 39.7
CLIP [41] ResNet50 25.6M 26.3 13.0 41.7 24.7 86.3 38.4
R3M [38] ResNet50 25.6M 53.3 50.7 86.3 59.3 97.7 69.5
Voltron [26] ViT-Small 22M 71.7 45.3 95.3 40.3 99.7 70.5
MPI (Ours) ViT-Small 22M 83.3 50.3 89.0 59.7 100.0 76.5

MVP [42] ViT-Base 86M 79.0 48.0 90.7 41.0 100.0 71.7
Voltron [26] ViT-Base 86M 76.0 45.3 91.0 41.0 99.3 70.5
MPI (Ours) ViT-Base 86M 89.0 57.7 93.7 54.0 100.0 78.9

TABLE IV: Robustness evaluation under Franka Kitchen
environment, with varying background distraction and light-
ing conditions [4]. MPI shows greater robustness against
background distraction and lighting condition variation.

Method Distractors Lighting Average

R3M [38] 20.1 0 10.1
Voltron [26] 49.3 27.6 38.5
MVP [42] 51.3 24.0 37.7
DINO [6] 49.7 26.4 38.1

MPI (Ours) 54.3 45.2 49.7

sulting in an escalation of +7.2%. Furthermore, our approach
consistently shows optimal or near-optimal performance across
all tasks, highlighting its sustained advantage in handling the
intricate scenarios encountered in the Franka Kitchen.

Robustness Evaluation. We upgrade the Franka Kitchen
simulation suite to the improved setting in Burns et al. [4],
which involves robustness evaluation under varying back-
ground distraction and lighting conditions. The comparisons
are shown in Table IV. R3M, learning with multimodal
contrastive objectives, leans towards extracting high-level se-
mantic features, which leads to a dramatic performance loss
under distractions. MPI shows superior generalization ability,
where it outperforms the previous leading option MVP by 3%
on average and boosts the success rate approximately twice in
the challenging darker lighting conditions.

3) Meta-World
Motivation. While the scene comprises only a singular object,
Meta-World [56] introduces random variations in the location
of the target interaction object during each validation, pro-
viding a complementary aspect to the fixed scenes presented
in Franka Kitchen. Understanding “where-to-interact” prior
to taking action enables the incorporation of implicit action
priors into subsequent policy learning processes. Evaluations
conducted on Meta-World emphasize the essential role of
visual representations in policy learning.

Evaluation Details. We adopt the tasks defined in Meta-
World, which involves assembling a ring onto a peg, picking

and placing a block between bins, pushing a button, opening a
drawer, and hammering a nail. Following the setup introduced
in Sec. IV-C2, we train shallow MLP policy heads with
25 demonstrations separately for each task using behavioral
cloning. The average success rates for each setting, encom-
passing the 5 specified tasks, 2 viewpoints, and 3 random
seeds, are calculated to obtain the results.

Experimental Results for visuomotor control on Meta-World
are presented in Table V. Remarkably, the smaller variant of
MPI achieves the highest success rate, surpassing MVP [42]
with visual backbones approximately four times larger than
ours. In comparison to Voltron [26] which also uses ViT-Small,
our lead extends even further to 17%. The superior perfor-
mance in Meta-World highlights the effective generalization
of the positional object movement achieved by MPI.

D. Evaluations on Referring Expression Grounding

Motivation. The precise understanding of “where-to-interact”
serves as a prerequisite for visuomotor control. It necessi-
tates models to capture object-centric priors and high-level
semantics. This entails considering interrelated properties such
as color, light, and spatial relationships within the context
of language expressions [26]. Referring Expression Ground-
ing (R.E.G.) aims to predict the bounding box of an object in
a cluttered scene based on a given language expression. The
performance on this task is language-dependent, allowing us
to assess the impact of pre-training with language instructions.

Evaluation Details. We use the OCID-Ref Dataset [50], which
consists of scenes representing typical robotics environments.
As language plays a crucial role in this task, we enhance the
visual embedding by employing the DistillBERT model [45]
to incorporate language information into R3M and MVP that
originally lack a language encoder. By combining the visual
embedding with the dimensions specified in Table VI and
the language embedding from DistillBERT, we ensure a stan-
dardized approach for a fair comparison. To extract features
from the concatenation of visual and language embeddings,
we introduce an MAP block [28] that is learned from the
task data. Further details regarding adaptation procedures and
additional analysis are provided in the Appendix.



TABLE V: Results of single-task visuomotor control on Meta-World simulation environment. We report the success rate (%)
over 50 randomly sampled trajectories. The best results are bolded and the second highest are underlined. MPI showcases
exemplary performance across three tasks, exhibiting a superior average success rate in comparison to prior methods.

Method Backbone Param. Assemble Pick & Place Press Button Open Drawer Hammer Average

R3M [38] ResNet50 25.6M 94.0 60.3 66.3 100 93.7 82.9
MVP [42] ViT-Base 86M 82.7 82.0 62.7 100 95.7 84.6
Voltron [26] ViT-Small 22M 72.3 57.3 30.7 100 83.0 68.7

MPI (Ours) ViT-Small 22M 69.0 64.0 98.7 100 96.0 85.7

TABLE VI: Results of Referring Expression Grounding.
We report results of smaller variants (ResNet50 for R3M, and
ViT-Small for MVP, Voltron and ours), measured by average
precision (%) under three IoU thresholds. ∗We leverage the
aggregated visual embedding ṽ from the encoder. MPI yields
the best detection results regardless of employing full-length
visual embeddings or adopting aggregated embedding.

Method Embedding Average Precision (AP)
@0.25 @0.5 @0.75

R3M [38] R2048 85.27 71.79 42.66
MVP [42] R384 93.07 85.32 60.37
Voltron [26] R196×384 92.93 84.70 57.61

MPI (Ours)∗ R384 96.29 92.10 71.87
MPI (Ours) R196×384 96.04 92.05 74.40

Experimental Results are in Table VI. Despite its effective-
ness for visuomotor control, R3M [38] struggles to accurately
locate objects based on language descriptions, as evident from
its modest 42.66% AP under 0.75 IoU. This limitation may
stem from its pre-training objective, which exclusively relies
on contrastive loss to acquire high-level semantic features,
with the loss of low-level localization features after global
average pooling. In contrast, our method, with embeddings
of the same dimension, achieves superior AP compared to
the previous leading method MVP [42]. We observe improve-
ments of +3.22%, +6.78%, and +11.5% under three different
IoUs. In addition, the token aggregator learned from pre-
training enables the model to achieve comparable or even
better performance with fewer embeddings, demonstrating the
effectiveness of our interaction-oriented learning target.

E. Ablations & Further Analysis

Input Frames. MPI uses three key frames from a video clip,
distinguishing it from conventional pre-training approaches
based on video prediction. To validate this design, we evaluate
representation learning with three consecutive frames, as pre-
sented in the top row of Table VIIa. Specifically, the selection
of data frames centers around the transition frame Ftrans or
the final frame Ffinal with corresponding box annotations. This
is to support the learning of interaction object detection and
maintain consistency with our designated learning objectives.

As outlined in Table VIIa, the performance with sequen-
tial frames is inferior to our pre-training paradigm, which

is grounded upon key interaction states. Furthermore, the
alternating use of transition and final frames as prediction
targets (with p set to 0.5 in Eq. (1)) enhances the model’s
comprehensive understanding of the interaction process, lead-
ing to further advancements in performance.

Decoder Design. As depicted in the right section of Fig. 2,
we employ a pair of transformer decoder blocks designated
as the prediction transformer and detection transformer. Each
decoder is assigned a specific role: the Prediction Transformer
predicts the unseen interaction state, while the Detection
Transformer infers the interaction object in the unseen frame.
In Table VIIb, we investigate the functions performed by each
decoder component. In contrast to employing transformer-
based decoders, the first row of Table VIIb showcases an
alternative approach where we utilize a 3-layer MLP to directly
decode the target frame from encoder embeddings. The utiliza-
tion of either of the introduced decoders leads to noteworthy
improvements in both tasks, evidenced by an increase of over
+12% average success rate on Franka Kitchen and a +26% AP
improvement in the R.E.G. task. The synergistic integration
of the prediction and detection transformer contributes to
enhanced representation learning, ultimately achieving optimal
performance and demonstrating the necessity of these two
interaction-oriented designs in our framework.

Causality Modeling. For the multi-modal encoder, we design
a causality modeling mechanism built upon the deformable
attention [59] to capture the causality relationships between
two input states during pre-training. As shown in Table VIIc,
excluding this module results in a decline in performance.
The comparable performance in R.E.G. can be attributed to
the task’s focus on static scene detection, which does not
strictly require an understanding of interaction dynamics. It
is important to note that the image features from the ViT are
simply replicated to constitute inputs for this module in all
downstream tasks. The additional parameters (e.g., 0.3M for
ViT-Small) and computational load introduced are negligible.

Involvement of Language. Our pre-training pipeline is
language-conditioned. Nevertheless, we have decoupled the
visual and language branches in our encoder. Therefore, the
language modality is not requisite in downstream tasks. As
shown in Table VIId, the inclusion of language leads to a +2%
increase in success rate in Franka Kitchen. This improvement
primarily originates from the ability of textual features to high-
light the most relevant visual features for the task. Note that



TABLE VII: Ablation studies and further comparisons. For ablation analysis on real-world robot experiments, we select
picking up the banana and placing it into the basket as our ablation tasks. We evaluate the task ten times and report the success
rate (%). Moreover, we report the average success rate (%) on Franka Kitchen and the Average Precision (%) @ 0.5 IoU for
the Refering Expression Grounding (R.E.G.) task. We report the results on Franka Kitchen with a fixed random seed.

(a) Ablation of input frames. The input selection is subjected to
the Bernoulli distribution characterized by p (in Eq. (1)). Our pre-
training methodology, employing the keyframes that signify states
of interaction, exhibits heightened efficacy in comparison to the
utilization of randomly selected frames.

Input Frames Real-world
Robot

Franka
Kitchen

R.E.G.
@0.5IoU

Sequential Frames 40 74.0 90.57

Key Frames
(Ours)

p = 0 40 76.4 91.73
p = 0.5 60 79.2 92.04
p = 1 60 78.8 91.77

(b) Ablation of decoder design. Prediction and Detection represent
the decoder blocks as introduced in Fig. 2. Both decoder blocks, tar-
geting the holistic understanding of “how-to-interact” and “where-to-
interact” within the interaction process, contribute indispensably to
the improved representation learning and downstream performance.

Decoder Real-world
Robot

Franka
Kitchen

R.E.G.
@0.5IoUPrediction Detection

30 62.4 63.94
✓ 50 74.8 90.58

✓ 50 75.2 90.72

✓ ✓ 60 79.2 92.04

(c) Ablation of causality modeling mechanism. Dual-frame in-
dicates that the visual embedding of the two frames is fed to the
decoder in parallel during pre-training.

Causality Modeling Franka
Kitchen

Robustness
Evaluation

R.E.G.
@0.5IoU

w/o (Dual-frame) 77.6 47.1 91.93
Deformable Attn. 79.2 49.7 92.04

(d) Ablation of input modality. For Vision-only, we discard lan-
guage prior in policy learning. Language modality is beneficial while
competitive performance is still achieved without language.

Input Modality Franka
Kitchen

Robustness
Evaluation

Vision-only 77.2 44.3
Vision + Language 79.2 49.7
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Fig. 6: Influence of pre-training data scale. We test on
the single-task visuomotor control task. MPI demonstrates im-
provement with scaled pre-training data, holding the potential
for further performance enhancement with large-scale data.

notwithstanding the absence of language, MPI still achieves
higher performance compared to other representation learning
frameworks evaluated in Table III.

Data Regime. We conduct ablation experiments on data scale,
where we pre-train MPI using data volumes of 25%, 50%,
100%, and 110%, respectively. Subsequently, we evaluate in
the Franka Kitchen environment. Results in Fig. 6 demonstrate
that increasing the scale of pre-training data correlates with
improved performance in downstream tasks.

V. CONCLUSIONS

In this work, we present MPI, an interaction-oriented
representation learning framework to empower manipulation
tasks. By predicting transition states based on initial and final
states, MPI enhances the model’s understanding of interactive
dynamics. Through extensive experiments, we demonstrate
that our method achieves state-of-the-art performance across
a diverse range of downstream tasks.

Limitations and Future Work. Our framework by far utilizes
explicit annotations (i.e., key frames, languages and bounding
boxes for interaction object) provided in the Ego4D-HoI [19]
dataset. This could limit the applicability of our methods to
broader datasets. Nonetheless, it is feasible to leverage some
well-established vision tools [7, 32] to collect annotations
cheaply and scale up the pre-training dataset with web-crawled
images. Additionally, the policy model employed in this study,
which relies on behavior cloning from a limited amount of
expert demonstrations, restricts the generalization of the model
to different scenarios. Besides, the lack of a large language
model constrains the model’s ability to perform long-horizon
planning and causal reasoning. Exploring the incorporation of
the pre-trained model from MPI into vision-language models
to tackle long-horizon interaction-related tasks represents an
interesting direction for future research.
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