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Abstract

Planning is a critical component of end-to-end autonomous
driving. However, prevailing imitation learning methods of-
ten suffer from mode collapse, failing to produce diverse
trajectory hypotheses. Meanwhile, existing generative ap-
proaches struggle to incorporate crucial safety and physi-
cal constraints directly into the generative process, necessi-
tating an additional optimization stage to refine their out-
puts. To address these limitations, we propose CATG, a
novel planning framework that leverages Constrained Flow
Matching. Concretely, CATG explicitly models the flow
matching process, which inherently mitigates mode collapse
and allows for flexible guidance from various conditioning
signals. Our primary contribution is the novel imposition
of explicit constraints directly within the flow matching pro-
cess, ensuring that the generated trajectories adhere to vi-
tal safety and kinematic rules. Secondly, CATG parameter-
izes driving aggressiveness as a control signal during gen-
eration, enabling precise manipulation of trajectory style.
Notably, on the NavSim v2 challenge, CATG achieved 2nd
place with an EPDMS score of 51.31 and was honored with
the Innovation Award.

1. Introduction

End-to-end multimodal planning [2, 10, 13, 15] has estab-
lished itself as a critical methodology in autonomous driv-
ing systems, significantly enhancing robustness and adapt-
ability during inference when compared to single-trajectory
prediction approaches. This capability is especially vital
in ambiguous or highly interactive driving scenarios—such
as unprotected left turns, merging in dense traffic, or nav-
igating intersections—where multiple distinct trajectories
may be equally appropriate. Despite these advantages,
the majority of contemporary multimodal methods remain
dependent on imitation learning frameworks. Such ap-
proaches [2, 3, 8-10, 14, 15] learn from a limited set of
demonstrated expert trajectories, and due to the lack of

strategy diversity of ground-truth trajectories, often yield
predictions that are homogenized, and deficient in behav-
ioral diversity.

In response to these shortcomings, several alternative
strategies have been proposed. A series of works incor-
porates generative models, such as diffusion processes,
to capture a broader distribution of plausible trajectories.
However, many of these methods [13, 17] do not explic-
itly supervise the generative denoising process, still re-
lying heavily on behavior cloning objectives. As a re-
sult, they remain susceptible to mode collapse. Another
paradigm [16, 18, 19] represents a further shift, depending
entirely on generative models for trajectory planning and
abandoning the use of imitation learning. While these meth-
ods benefit from generative models, they introduce new
challenges: the stochasticity in noise initialization can lead
to high-variance predictions, and the absence of a mecha-
nism for hard constraint integration, such as obstacle avoid-
ance or compliance with traffic rules, compromises the
safety and interpretability of generated trajectories.

To address these limitations, we propose CATG, a novel
trajectory generation framework based on flow matching
that completely eliminates imitation learning while en-
abling flexible injection of explicit constraints into the gen-
erative process. Our contributions are threefold:

(1) Novel generative framework. We introduce CATG,
a multimodal trajectory generator built upon flow match-
ing. Unlike conventional methods, CATG eliminates the
reliance on imitation learning while supporting diverse and
flexible conditional controls.

(2) Constraint-guided generation. We explicitly inte-
grate feasibility and safety constraints into the generative
process through a progressive mechanism: prior-informed
anchor design is used to construct constraint-guided prob-
ability flows, and energy-based guidance further steers tra-
jectories toward feasible regions.

(3) Reward-conditioned controllability. We treat en-
vironmental reward signals as conditional inputs, enabling
controllable trade-offs between aggressive and conservative
driving styles during inference.



CATG is extensively evaluated on the [CCV NAVSIM
V2 End-to-End Driving Challenge, where it demonstrates
superior planning accuracy and robust generalization to out-
of-distribution data. When combined with an open-source
scoring model, CATG achieves an EPDMS score of 51.31,
competitive with state-of-the-art alternatives.

2. Preliminary

Let R¢ denote the data space, two important objects we
use in this paper are: the probability density path p :
[0,1] x R — R.g, which is a time dependent probability
density function i.e., [ p;(z)dax = 1, and a time-dependent
vector field, v : [0,1] x RY — R9. A vector field v; can
be used to construct a time-dependent diffeomorphic map,
called a flow, ¢ : [0,1] x R? — RZ, This flow serves as
a probability path p;(x) connecting the source distribution
Xy ~ mo and target distribution X; ~ 71, defined via the
ordinary differential equation (ODE):

d
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And, we can model the vector field v; with a neural net-
work, v(t; ). Let X; denote a random variable distributed
according to an unknown data distribution 7. We assume
that we only have access to data samples from 71, but not
to the density function itself. Furthermore, we let my be a
simple distribution, such as a standard normal distribution.
Given a target probability density path p;(z) and a corre-
sponding vector field u;(x), which generates p;(x), we de-
fine the Flow Matching (FM) objective as:

Ly (0) = Evp, o) llve(2) — ue ()] ®)

In CATG, we use rectified flow to construct a probability
path ¢:

X, =tX; + (1 - )X, 4)

So, the drift force v : mg — 1 is set to drive the flow to
follow the direction (X; — Xj) of the linear path pointing
from X to X; as much as possible, by solving a simple
least squares regression problem:

1
Min, / E[||(X; — Xo) — v(Xy, 1)]|%]dt, )
0
where X, is the linear interpolation of Xy and X;.

3. Method

3.1. Flexible conditioning signal

We followed the Transfuser [4] as our perception backbone.
For flow matching progress, we sample X from a standard

Gaussian distribution and normalize the target trajectory X
to the range [—1,+1]. CATG constructs a flow with the
starting point as X and the endpoint as.X;. Then, we apply
positional encoding to X; and utilize a Unet Encoder [5]
to encode X, into a feature Fx,. Subsequent to the CATG
perception module, CATG obtains the agent’s query Qqg,
ego query ()4, and BEV feature Fz. In a separate pre-
processing step, the BEV map segmentation result is first
converted into a binary road map My ; and then fused with
BEV grid positional encoding Posp. Finally, CATG fuses
the feature F'x, with all these elements (Qqg, Qeq, £'5 and
My 1) through multiple layers of cross-attention as shown
in Fig. 2.

Fx, = Fx, + Timepea(t) ©
Fx, = CrossAttn(Fx,, Qag) )
Fx, = CrossAttn(Fx,, Fusion(Fg, Mo,1, Posp)) (8)
Fx, = CrossAttn(Fx,, Qeg) ©)

In order to flexibly control the trajectory generation style
in a classifier-free manner [7] during inference, we intro-
duce three distinct types of conditional control signals:

(1) Trajectory anchor: CATG treat pre-clustered tra-
jectory anchors as high-level abstractions of driving modes.
CATG first constructs a trajectory vocabulary vocabgnchor
of size 8,192 by applying FPS (farthest-point sampling)
over the entire training dataset. CATG is trained in a
classifier-free guidance [7] manner, where driving anchors
are incorporated as conditional signals to guide trajectory
generation. During training, the anchor most similar to the
GT trajectory is utilized as the conditional signal, which
is determined by DTW distance between trajectory vocab-
ulary and GT trajectory. At inference time, a pre-trained
scoring model, GTRS [12] (with a V2-99 backbone), is em-
ployed to select the top-100 anchors with the highest like-
lihood, which subsequently serve as conditional inputs for
generating diverse and compliant trajectories.

(2) Target point: During training, CATG takes the end-
point of the GT trajectory as the conditional signal. Dur-
ing testing, in contrast, the endpoint of the anchor obtained
from a scoring model serves as the conditional control sig-
nal.

(3) Driving command: The driving command is also a
type of control signal. CATG converts the command types
in NAVSIM [6] into a one-hot encoding for use as a condi-
tional signal.

3.2. Constraint-Aware Trajectory Generation

A significant challenge in generative models is the lack of
interpretability in their intermediate representations, posing
difficulties for directly constraining the outputs. Specifi-
cally in the NAVSIM V2 [6] challenge, constraining the
generated trajectories to satisfy the Driving Area Compli-
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Figure 1. The architecture of CATG with Flow Matching. The image is encoded into image features, which are subsequently fed into
detection and mapping modules to generate perceptual features. Before training, CATG processes each gt trajectory (GT Traj) through
simulator to compute and offline store its score. Subsequently, CATG encodes Gaussian-sampled latent variables and the timestamp ¢ into
input features via a encoder. These features are fused with perceptual features, trajectory rewards, and conditioning signals (including
plan anchor, goal point, and driving command) through cross-attention. The signal fusion module consists of multi-layer cross-attention
blocks and adheres to the classifier-free [7] training paradigm. The velocity field decoded by the decoder is refined via our three correction
strategies: CVF, CIV, and CAT (Sec 3.2). Finally, the driving trajectory is generated through sampling.

ance (DAC) metric proved highly challenging. Unlike con-
straints such as inter-agent collision avoidance which can
be integrated by using vehicle distances as conditional sig-
nals, as seen in Diffusion-Planner [19], road geometry is
far more complex. Therefore, in the following discussion,
we will primarily focus on constraining trajectories to sat-
isfy road compliance. However, it is noteworthy that our
method can also be adapted to other types of constraints.
To address this, we introduced three more direct and effi-
cient methods for constraining the generation. The Flow
Matching generation process is formulated as:

Xip1 = Xy +vidt (10)

Since the formulation above indicates that the generated
state X, at the next timestep is determined by the inter-
mediate variable X and the velocity field v, a compelling
hypothesis arises: could one constrain the generation pro-
cess by imposing constraints on these two quantities ?

(1) Constraining velocity field v; (CVF): Based on the
road segmentation result, a trajectory X that satisfying the
DAC constraint is first selected from trajectory vocabulary
vocabgynchor- Subsequently, for a given Gaussian sample
X as the flow’s starting point, the ideal velocity field that

leads to trajectory X can be computed.

c XIC_XO
i

CATG leverages this precomputed field vy to correct the
potentially biased velocity field v; predicted by the model.
Consequently, we propose the concept of a synthetic ve-
locity field v;, which is a combination of the model pre-
dicted velocity field v; and the precomputed one vy during
the sampling process as shown in Fig. 1 (a):

(1)

/ 2 v; - v¢
o= v T

(12)
where \ was set to -0.1.

(2) Constraining intermediate variables X; (CIV): A
flow generated by a model-predicted velocity field often de-
viates from the ideal, leading to a final sample that fails to
meet constraints. This flow can be discretized into a series
of intermediate variables Xy, ..., Xy, ..., X1; Therefore, if
these intermediate variables can be effectively constrained,
the final generated outcome can consequently be controlled.
However, correcting X; at every timestep is inefficient. In-
stead, inspired by [11], CATG addresses this by correct-
ing the flow at its origin. It replaces the initial Gaussian
random sample X, with an anchor X{ selected from the
trajectory vocabulary vocabgpnchor as shown in Fig. 1 (b),
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Figure 2. The figure illustrates that sampling by using an anchor
as the starting point results in a more reasonable trajectory.

which complies with the DAC constraint, even though this
anchor might perform poorly on other evaluation metrics.
However, CATG can refines this anchor to make it more
reasonable. As shown in Fig. 2, this approach of starting
from a DAC-compliant anchor enables the model to pro-
duce more plausible trajectories.

(3) Constraint-Aware Training (CAT): In contrast to
Diffusion-Planner [19], which only introduces energy term
during inference, we incorporate constraints into the train-
ing phase by encoding them as an energy function. When
trajectory are sampled along the direction of ascending en-
ergy, they exhibit a higher probability of satisfying the con-
straints as shown in Fig. | (c). Specifically, the DAC con-
straint can be represented by computing a Euclidean Signed
Distance Field. The energy of a trajectory decreases as it
moves closer to the road boundary, penalizing undesirable
deviations. We follow the Energy Matching [1] framework
for model training. A two-stage procedure is employed, the
first stage trains the Flow Matching process, and the second
stage trains the Energy Matching process.

3.3. Reward as condition:

To control trajectory aggressiveness at inference time,
CATG utilizes an EP (ego process) score as a conditioning
signal. This score is derived by evaluating each GT trajec-
tory in the NavTrain set within the NAVSIM simulator. By
setting the EP condition to 1 during inference, the model is
encouraged to produce more aggressive driving behavior.

4. Experiments

4.1. Experiments Setup

Our model is trained in two stages. The first stage of train-
ing encompasses the Flow Matching process, the perception
module, and the map segmentation module. It was con-
ducted with a batch size of 64, a learning rate of 2 x 1074,
and trained for 90 epochs by using NavTrain split. The
second stage of training adhered to the Energy Matching

Table 1. Results of proposed CATG architecture in NAVSIM V2

. Team: bjtu_jia_team
Metric Name Jtu-)

& qcraft
extended pdm score combined | 51.3116
no at fault collisions stage one 98.2142
drivable area compliance stage one 100
driving direction compliance stage one 99.6428
traffic light compliance stage one 100
ego progress stage one 80.8379
time to collision within bound stage one 98.5714

lane keeping stage one 90

history comfort stage one 94.2857
two frame extended comfort stage one 57.1428
no at fault collisions stage two 88.9016
drivable area compliance stage two 95.4416
driving direction compliance stage two 97.9186
traffic light compliance stage two 96.8362
ego progress stage two 77.9218
time to collision within bound stage two 88.0227
lane keeping stage two 56.6261
history comfort stage two 98.3082
two frame extended comfort stage two 64.4264

framework, focusing solely on fine-tuning the Flow Match-
ing process. This stage used a batch size of 64, a learning
rate of 2 x 10~%, and trained for 10 epochs by using Nav-
Train split. During inference, CATG generates 100 candi-
date trajectories with 100 sampling steps.These candidates
and trajectory vocabulary vocabgnchor are then ranked by
an open-source, pre-trained GTRS [12] scorer model (with
a V2-99 backbone) to select the most plausible trajectory as
the final output.

4.2. Experiments result

We present our proposed CATG architecture’s results as
shown in Tab. 1.

5. Limitation

Sampling trajectories with 100 steps remains computation-
ally expensive. Nevertheless, accelerating this process may
lead to a degradation in trajectory quality. Therefore, a
promising direction for future work is to enhance sampling
efficiency while preserving the quality of the generated tra-
jectories.

6. Conclusion

We presents an end-to-end planner that leverages flow
matching. Our approach is capable of incorporating flexible
conditional signals to control trajectory generation. Further-
more, we innovatively propose three distinct strategies to
enforce explicit constraints throughout the generation pro-
cess. Experimental results presented in Tab. | demonstrate
that our framework achieves a EPDMS of 51.31.
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