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Abstract

End-to-end multi-modal planning is a promising
paradigm in autonomous driving, enabling decision-making
with diverse trajectory candidates. A key component is a
robust trajectory scorer capable of selecting the optimal
trajectory from these candidates. While recent trajectory
scorers focus on scoring either large sets of static trajec-
tories or small sets of dynamically generated ones, both
approaches face significant limitations in generalization.
Static vocabularies provide effective coarse discretization
but struggle to make fine-grained adaptation, while dy-
namic proposals offer detailed precision but fail to capture
broader trajectory distributions. To overcome these chal-
lenges, we propose GTRS (Generalized Trajectory Scoring),
a unified framework for end-to-end multi-modal planning
that combines coarse and fine-grained trajectory evaluation.
GTRS consists of three complementary innovations: (1) a
diffusion-based trajectory generator that produces diverse
fine-grained proposals; (2) a vocabulary generalization tech-
nique that trains a scorer on super-dense trajectory sets
with dropout regularization, enabling its robust inference
on smaller subsets; and (3) a sensor augmentation strategy
that enhances out-of-domain generalization while incorpo-
rating refinement training for critical trajectory discrimina-
tion. As the winning solution of the Navsim v2 Challenge,
GTRS demonstrates superior performance even with sub-
optimal sensor inputs, approaching privileged methods that
rely on ground-truth perception. Code will be available at
https://github.com/NVlabs/GTRS.

1. Introduction

End-to-end multi-modal planning has emerged as a power-
ful approach in autonomous driving. Unlike traditional uni-
modal planners that predict a single trajectory [5, 11, 12],
multi-modal approaches [1, 3, 6, 15, 16, 18, 19] generate
multiple candidates, enabling greater adaptability during
inference. This adaptability supports a wide range of appli-
cations, including responding to language instructions [21–
23, 28], accommodating different driving styles [15, 25], and
navigating complex driving environments [16, 18, 24].

The typical problem of end-to-end multi-modal planning
involves evaluating multiple trajectory proposals through
scoring [1, 3, 16, 18, 19, 24] given raw sensor data, without
access to ground-truth perception. The planner selects the
trajectory with the highest likelihood as the decision.

Current trajectory scoring methods generally fall into two
categories: (1) scoring a large static vocabulary [3, 16, 18,
24], and (2) scoring a small set of dynamically generated
proposals [19, 30]. Both approaches face challenges in gen-
eralization. Fixed trajectory vocabularies [3, 16, 18] offer
limited flexibility, as they cannot adapt to situations where
dynamic proposals are needed. Meanwhile, methods that
rely on a small number of dynamic proposals [19, 30] often
fail to generalize to unseen trajectories, since the scorer is
only exposed to a narrow subset during training. Ideally, a
robust scorer should generalize across diverse trajectory dis-
tributions—whether static or dynamic—to handle the full
complexity of real-world scenarios.

To address these limitations, we propose GTRS (Gener-
alized Trajectory Scoring) for end-to-end multi-modal plan-
ning. GTRS is built on a key insight: an effective trajectory
scorer must be trained on both coarse and fine-grained trajec-
tory distributions to develop robust generalization capabili-
ties. Our approach contains three complementary techniques,
each leading to a dedicated sub-network as shown in Fig. 1:
1. Diffusion-based Trajectory Generation (DP): A diffu-

sion policy (DP) [4] produces diverse trajectory candi-
dates with BEV features as the condition. DP provides the
fine-grained details crucial for safety-critical situations
that coarse, fixed vocabularies cannot capture. (Sec. 2.1)

2. Trajectory Vocabulary Generalization (GTRS-Dense):
We train on a super-dense vocabulary of trajectory sam-
ples (16,384 trajectories) covering a wide range of driving
scenarios. To maximize generalization of fixed trajectory
vocabularies, we propose a trajectory dropout training
strategy. The idea is to deliberately create a mismatch
between training and inference vocabularies—training
the model to effectively generalize to unseen trajectory
distributions during inference. (Sec. 2.2)

3. Sensor Augmentation with Refinement (GTRS-Aug):
To handle unexpected trajectory events and data distri-
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Figure 1. The Three Pillars of GTRS.

bution shifts in the form of viewpoint changes, we intro-
duce a data augmentation strategy by applying rotation
perturbations to sensor inputs, dramatically improving ro-
bustness to out-of-domain environments. Further, a refine-
ment training mechanism enables the model to distinguish
between subtly different trajectory options. (Sec. 2.3)
GTRS demonstrates strong trajectory scoring abilities

even under sub-optimal sensor conditions, as evaluated on
the Navhard benchmark. Our contributions are as follows:
1. We propose GTRS, a generalizable end-to-end multi-

modal planning framework that combines diffusion-based
trajectory generation with vocabulary scoring. With super-
dense vocabularies, sensor augmentations, and refinement
strategies, GTRS enables effective scoring across both
dynamic and static candidates.

2. GTRS demonstrates superior planning performance and
generalization to out-of-domain data on the Navhard
benchmark [2]. With model ensembling, our sensor-
based GTRS—the winning entry of the Navsim v2 Chal-
lenge—approaches the performance of the state-of-the-art
planner PDM-Closed [6], which operates on ground-truth
perception and is unaffected by degraded sensor inputs.

2. The Three Pillars of GTRS

2.1. Trajectory Generator

To obtain high-quality dynamic trajectory proposals during
inference, diffusion models have become a popular practice
in autonomous driving for its ability to generate multi-modal
trajectory candidates [4, 13, 15, 19, 29–31, 33]. We adopt
a Diffusion Policy-based trajectory generator following [4]
to produce multiple trajectory proposals. This sub-network
is composed of an image backbone to extract image fea-

tures, a BEV encoder where BEV queries attend to image
features through a Transformer Encoder [26], and a Diffu-
sion Transformer that generates N trajectory proposals Vdp

conditioned on the BEV features.
During training, we follow Transfuser [5] and include a

BEV segmentation head to provide supervision on the BEV
features. For the Diffusion Transformer, we apply first-order
differentiation to the ground-truth trajectory waypoints to
normalize the input and use the DDPM scheduling strat-
egy [10] for denoising ground-truth trajectories.

2.2. Scorer with Vocabulary Generalization

While diffusion-based trajectory generators provide fine-
grained trajectory proposals, they remain limited in their
ability to capture the full breadth of possible driving scenar-
ios. To achieve robust generalization, we introduce a novel
vocabulary generalization technique that trains the model
to effectively evaluate diverse trajectory distributions, even
those not seen during training.

We propose the Generalized Vocabulary Scorer GTRS-
Dense, which builds upon Hydra-MDP [18] but introduces
critical innovations in trajectory evaluation. The architec-
ture consists of an image backbone, a trajectory tokenizer
that encodes candidates into feature representations, and a
Transformer Decoder [26] that models complex interactions
between trajectory and image tokens.

Our key innovation is twofold: First, we deliberately train
on a super-dense trajectory vocabulary (VXL with 16,384
distinct trajectories) that comprehensively covers the tra-
jectory space, while inferencing on a smaller vocabulary
(VL with 8,192 trajectories)—forcing the model to develop
generalizable representations. Second, we apply vocabulary
dropout to VXL during training, randomly removing half of
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Method Img. Resolution Backbone Training Vocab. Inference Vocab. EPDMS1 EPDMS2 EPDMS

DP w/o Scorer 512× 2048 V2-99 - Vdp (Random) 60.9 40.8 25.6

GTRS-Dense

512× 2048 EVA-ViT-L VXL Vdp 76.6 48.6 36.7
512× 2048 EVA-ViT-L VXL VXL 78.1 50.2 39.7
512× 2048 EVA-ViT-L VXL Vdp ∪ VXL 77.4 52.7 40.8
512× 2048 EVA-ViT-L VXL Vdp ∪ VL 71.8 57.3 42.0
512× 2048 EVA-ViT-L VXL(Dropout) Vdp ∪ VL 73.1 59.0 43.4

Baseline Scorer [18] 256× 1024 ViT-L VL Vdp ∪ VL 73.4 54.1 40.6
GTRS-Aug 256× 1024 ViT-L VL Vdp ∪ VL 75.0 56.9 43.4

Table 1. Roadmap to Generalized Trajectory Scoring. Random denotes that we randomly select a trajectory from Vdp during inference.
V2-99 [14] is pretrained from DD3D [20], EVA-ViT-L [9] is initialized from StreamPETR [27], and ViT-L [8] is from Depth Anything [32].
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Figure 2. The Inference Pipeline of GTRS.
the trajectories in each batch. This serves multiple purposes:
(1) it aligns the number of trajectory tokens during training
and inference, (2) it creates intentional distribution shifts that
improve robustness, and (3) it acts as an effective regularizer
against overfitting to specific trajectory patterns.

This vocabulary generalization technique enables our
model to effectively score both static trajectory vocabular-
ies and dynamically generated proposals without requiring
dedicated training on both types—a capability previous ap-
proaches have struggled to achieve.

2.3. Sensor-augmented Scorer with Refinement

To further enhance model robustness across diverse and
out-of-domain environments, we develop a systematic sen-
sor augmentation strategy, along with a refinement train-
ing mechanism. This approach focuses on two critical chal-
lenges: handling perceptual distribution shifts in sensor data
and distinguishing between subtly different trajectory op-
tions in safety-critical scenarios.

First, we introduce structured sensor perturbations by
applying controlled 2D horizontal view rotations to the in-
put images. Rather than random augmentation, these per-
turbations specifically target the model’s ability to maintain
consistent trajectory evaluation under varying viewing condi-
tions. To maintain label consistency, we apply corresponding
transformations to the ground-truths used for training.

Second, we develop a refinement training mechanism fo-
cused on fine-grained trajectory discrimination. As a training-
only module, it incorporates an additional Transformer De-
coder that progressively refines trajectory scores for the
top-k most promising candidates, enabling the model to
capture subtle differences between similar trajectories. The

refinement process is guided by a self-distillation framework
where an exponential moving average (EMA) copy of the
model provides soft supervision signals:

ỹmi = ŷmi + clip
(
smi,teacher − ymi ,−δm, δm

)
, (1)

where ỹmi represents the refined target score, ŷmi is the
ground-truth score, and smi,teacher is the teacher model’s pre-
diction. The clipping parameter δm ensures the refined tar-
gets remain within a reasonable range of the ground truth.

Together, these strategies enable GTRS-Aug to per-
form robustly in challenging out-of-domain settings without
domain-specific adaptation.

3. Inference-time Integration
After training the sub-networks described above, we combine
the trajectory generator and one of the trajectory scorers (i.e.
GTRS-Dense, GTRS-Aug) during inference, as illustrated
in Fig. 2. The dynamic proposals generated by the generator
Vdp are appended to the inference vocabulary VL, and the
combined set Vdp ∪VL is tokenized and scored by the scorer.

This sequential integration of dynamic proposals at infer-
ence time, rather than during training, is a deliberate design
choice that leverages the strengths of both approaches. By
training solely on a diverse static vocabulary, the scorer de-
velops robust generalization abilities across a wide range
of trajectory patterns. Then, at inference time, the diffusion-
based generator provides fine-grained, context-aware trajec-
tories specifically tailored to the current scene. Meanwhile,
it avoids the computational overhead and potential instability
of integrating diffusion sampling into the training loop, while
still benefiting from the precision of dynamically generated
trajectories during deployment.

4. Experiments
4.1. Dataset and metrics

The Navsim dataset [7] is designed for evaluating end-to-end
driving systems, addressing prior limitations in benchmark-
ing [17]. The Navsim v2 Challenge introduces a new split,
Navhard, which features difficult real-world scenarios along-
side their synthetic continuations generated using 3DGS.
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Method Img. Resolution Backbone Stage NC DAC DDC TLC EP TTC LK HC EC EPDMS

PDM-Closed [6] GT Perception - Stage 1
Stage 2

94.4
88.1

98.8
90.6

100
96.3

99.5
98.5

100
100

93.5
83.1

99.3
73.7

87.7
91.5

36.0
25.4 51.3

LTF [5] 256 × 1024 ResNet34 Stage 1
Stage 2

96.2
77.7

79.5
70.2

99.1
84.2

99.5
98.0

84.1
85.1

95.1
75.6

94.2
45.4

97.5
95.7

79.1
75.9 23.1

GTRS-Dense 512 × 2048

V2-99 Stage 1
Stage 2

98.7
91.4

95.8
89.2

99.4
94.4

99.3
98.8

72.8
69.5

98.7
90.1

95.1
54.6

96.9
94.1

40.4
49.7 41.7

EVA-ViT-L Stage 1
Stage 2

97.6
91.9

95.8
91.3

99.7
92.7

99.8
99.0

77.2
72.7

97.8
90.4

95.3
53.8

97.3
94.1

46.7
41.6 43.4

ViT-L Stage 1
Stage 2

98.9
91.5

98.2
90.8

99.8
94.7

99.6
98.5

73.9
70.8

98.9
90.1

95.3
55.4

97.3
97.2

40.0
54.2 45.3

GTRS-Aug
512 × 2048

V2-99 Stage 1
Stage 2

98.9
87.9

95.1
88.8

99.2
89.6

99.6
98.8

76.1
80.3

99.1
86.0

94.7
53.5

97.6
97.1

54.2
56.1 42.1

EVA-ViT-L Stage 1
Stage 2

98.7
89.5

98.0
89.6

99.1
92.9

99.8
98.5

75.9
78.9

98.7
86.4

94.7
55.3

97.6
96.5

49.8
52.7 44.7

256 × 1024 ViT-L Stage 1
Stage 2

97.8
90.3

97.3
88.9

98.9
90.8

99.3
98.9

77.1
81.1

98.2
87.4

95.8
54.2

97.6
95.1

50.2
48.3 43.4

GTRS-E-Lite 512 × 2048 EVA-ViT-L Stage 1
Stage 2

98.2
90.6

98.9
91.7

99.6
93.6

99.6
98.5

75.8
77.1

98.4
89.0

96.9
56.1

97.3
96.3

53.3
47.8 46.6

GTRS-E * * Stage 1
Stage 2

98.9
92.3

99.3
93.3

99.8
94.6

99.8
99.2

75.2
73.1

98.4
91.2

96.0
53.9

97.6
96.7

51.6
56.8 49.4

Table 2. Performance on the Navhard Benchmark. Backbone settings follow Tab. 1. GTRS-E-Lite ensembles GTRS-Dense and GTRS-Aug
with EVA-ViT-L. The challenge-winning entry GTRS-E ensembles all six models from GTRS-Dense and GTRS-Aug.

Nevertheless, we observe that the synthetic data exhibits
sub-optimal quality, which often contains artifacts such as
distortion and blurring and may impair the performance
of sensor-based planners. The Navsim v2 challenge evalu-
ates end-to-end models based on the extended PDM Score
(EPDMS) [16], an extension of the PDM Score [7] by ag-
gregating multiple rule-based metrics 1. Finally, it uses a
two-stage scoring pipeline to aggregate the metrics on real-
world data (Stage 1) and synthetic data (Stage 2).

4.2. Implementation Details

We train all models on the Navtrain split with 24 NVIDIA
A100 GPUs, while the Navhard split and other synthetic
sensor data are not used for training. Training is conducted
for 20 epochs with a total batch size of 528 by default, while
the training lasts 50 epochs for the trajectory generator. The
learning rate and weight decay are 2 × 10−4 and 0.0. We
concatenate the frontal view with center-cropped front-left
and front-right views to form the input image. For the trajec-
tory generator DP, we formulate a similar input image from
the back-view, back-right view, and back-left view for BEV
construction. Finally, we use 100 denoising steps with the
DDPM scheduler [10] and generate 100 proposals in Vdp.

4.3. Roadmap to Generalized Trajectory Scoring

Trajectory Vocabulary Generalization. We evaluate
GTRS-Dense with various inference vocabularies (Tab. 4.3).
Notably, though it is trained only on the super-dense static vo-
cabulary VXL, the scorer generalizes well to unseen dynamic
proposals in Vdp (EPDMS: 36.7), demonstrating strong zero-

1https://github.com/autonomousvision/navsim/blob/main/docs/metrics.md

shot generalization by outperforming the generator with ran-
dom selection substantially (+ 11.1 EPDMS). When combin-
ing Vdp with VXL, performance improves by +1.1 EPDMS
over VXL, confirming the complementary benefit of dynamic
proposals at inference. Interestingly, Vdp ∪ VL outperforms
Vdp ∪ VXL, likely because the reduced vocabulary complex-
ity leads to better generalization in out-of-domain synthetic
data. Finally, applying dropout to VXL during training yields
the best performance (EPDMS: 43.4), showing that vocabu-
lary dropout enhances generalization significantly.
Sensor Augmentation with Refinement. Finally, we eval-
uate GTRS-Aug, which incorporates sensor augmentation
and refinement training. This model achieves the same top-
level performance (EPDMS: 43.4) as the best GTRS-Dense
variant, surpassing the baseline scorer [18] by a large mar-
gin (+2.8 EPDMS). This confirms that augmentations and
refinement training greatly improve trajectory scoring.

4.4. Main Results

As shown in Tab. 2, our GTRS variants achieve significant
improvements over the LTF baseline [5]. By scaling the im-
age backbone to ViT-L [8] and EVA-ViT-L [9], our best
single model achieves 45.3 EPDMS on the Navhard Bench-
mark. Further, GTRS-E-Lite, an ensemble of GTRS-Dense
with GTRS-Aug during scoring, achieves 46.6 EPDMS.
Our challenge-winning entry GTRS-E, an ensemble of all
six variants, reaches 49.4 EPDMS, approaching the perfor-
mance of PDM-Closed [6]—a privileged planner that relies
on ground-truth perception—despite ours using challenging
synthetic sensor input. This demonstrates the exceptional
generalization capabilities of our approach across both tra-
jectory distributions and perceptual domains.
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