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Abstract

World models enable robust policy evaluation of robots by
simulating environment responses to agent actions. This
paper details methodologies for two foundational compo-
nents of such models, using datasets from the 1X World
Model Challenge: (1) accurate, long-horizon visual predic-
tion conditioned on robot poses, and (2) efficient compres-
sion of video data. For predictive sampling, we adapt Dif-
fusion Forcing Transformer (DFoT). Our long horizion pre-
diction model uses a UViT3D backbone, initially pretrained
on RealEstatelOK and then fine-tuned on the 1X humanoid
raw video and state dataset. Accurate pose conditioning is
achieved with a FiLM module in the ResBlocks and Adal.N-
style mechanism in the TransformerBlocks. For state com-
pression (cross-entropy evaluation), a conditional CNN is
trained on 1X tokenized data, which predicts a future latent
tokens. We achieve a 21.5578 PSNR for the frame gener-
ated two seconds into the future in sampling and a top-500
CE loss of 7.4976 in compression, ranking first in both cat-
egories.

1. Introduction

In general-purpose robotics, evaluating policies remains
a significant hurdle. Real-world environments are time-
consuming to set up and difficult to replicate with con-
sistency across trials [1]. While traditional physics-based
simulators offer control, they struggle with non-rigid ob-
jects and the overhead of asset creation. Learned world
models offer a solution by learning to simulate an envi-
ronment’s response to an agent’s actions directly from real-
world video, absorbing its richness and complexity without
extensive manual engineering [1].

Framed by the 1X World Model Challenge [2], this work
addresses two foundational components: long-horizon pre-
dictive sampling and efficient data compression. Long-
horizon predictive sampling tackles the challenge of gen-
erating coherent future sequences without the common fail-

ure modes of model collapse or hallucination. Efficient data
compression is necessary to manage the significant storage
and compute overhead of training on large, diverse datasets.

Figure 1. Diverse environments and tasks in the raw video and
state dataset. Dataset available here [2].

2. Datasets

Our work utilizes two 1X Technologies datasets collected
from EVE humanoid operations. The raw video and state
dataset (for sampling) provides 512x512 raw videos (30
Hz) with synchronized robot states. This 25-dimensional
state vector includes joint angles for all major limbs and
the neck, alongside binary hand closure states and overall
linear/angular velocities of the robot base. The tokenized
video and state dataset (for compression) contains these
videos processed by the NVIDIA Cosmos 8x8x8 tokenizer
(64k vocabulary) into 3x32x32 tokens and the same syn-
chronized states. Both datasets include training and valida-
tion splits, with 100 hours and 1 hour of video respectively.

3. Background Models and Techniques

Our work adapts established deep learning frameworks. For
video prediction, we use the Diffusion Forcing Transformer
(DFoT) [7], which iteratively refines predictions by enforc-
ing consistency with historical context. This is built upon
a UVIT [4] backbone, a Vision Transformer architecture
optimized for diffusion models. For action conditioning,


https://huggingface.co/spaces/1x-technologies/1X_World_Model_Challenge_Home

we adapt two mechanisms prominent in text-to-image syn-
thesis: FiLM [6] modules modulate convolutional feature
maps in ResBlocks, while AdalLN-style methods [5] adapt
normalization layers in TransformerBlocks. For the com-
pression task, our model predicts tokens generated by the
NVIDIA Cosmos tokenizer [3], which quantizes spatio-
temporal video patches into a finite vocabulary.

4. Long-Horizon Visual Prediction

4.1. Task and Evaluation

The 1X Sampling Challenge requires predicting a 512x512
video frame two seconds ahead (77th frame from a 17-
frame, 30 fps context). This prediction is conditioned on
past video and state trajectories (Sec. 2). We measure pixel-
level fidelity via PSNR, defined as:
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4.2. Approach: Action-Conditioned Diffusion Forc-
ing Transformer

Our long horizon sampling model has 466M parameters and
leverages the Diffusion Forcing Transformer (DFoT) frame-
work [7]. We employ a UViT3D [4] backbone (Fig. 2;
configuration in Sec. 4.3). This block structure leverages
convolution for local feature processing in earlier ResBlock
stages and the transformer’s self-attention mechanism for
global context modeling in deeper TransformerBlock lay-
ers. The denoising process is conditioned by robot pose
vectors using adaptive modulation: FiLM for ResBlocks
and AdaLN-style mechanisms for TransformerBlocks, de-
tailed in Fig. 3.

Training and Guidance: The UViT3D backbone is ini-
tialized with RealEstate10K pretrained weights [7] at step
500Kk, then fine-tuned on 1X’s raw train dataset for ~ 1.2M
steps. Pose-specific FILM/AdaLN modules were trained
from scratch, allowing them to specialize in mapping EVE
robot kinematics to visual changes. Key parameters are in
Table 1. Optimal PSNR was achieved using stabilized his-
tory guidance with a guidance scale of 3.0 and a stabiliza-
tion level of 0.01.

Prediction and Post-processing: 17 frames were down-
sampled to 5 frames (Fy, Fy, Fg, F2, Fg) serving as con-
text. The model autoregressively generates 15 frames (at
4-frame intervals) to reach frame 77. Post-prediction, Gaus-
sian blur (o = 2.0) and histogram matching (o = 0.8 with
context frames) improved PSNR by approximately 1.6 dB.
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Figure 2. UViT3D backbone: U-Net with ResBlocks (C=128,

256) and TransformerBlocks (C=576, 1152). Adaptive condition-
ing (Fig. 3) uses pose signals.
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Figure 3. ResBlock (left) and TransformerBlock (right) internals,
showing pose-conditioned FiILM and AdaLLN-style modulation.

Table 1. Key Training Hyperparameters for Sampling Model

Parameter Value

466M
RealEstate 10K (500k steps)
1.16M (Total 1.66M)

Trainable Parameters
Base Model Pretraining
Fine-tuning Steps

Batch Size (per GPU) 1 (on 8 A5000s)

Init. LR le-5

LR Scheduler Cosine decay to le-6 (w/ warmup)
Diffusion Beta Schedule Cosine

Training Duration ~ 1 month
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Figure 4. Examples of successful long-horizon prediction.

Top: Moving around in a kitchen; Bottom: Grabbing and placing an object.

Videos: https://huggingface.co/spaces/Ppffg/lxdemo.

4.3. UViT3D Configuration

Training and Guidance: The UViT3D backbone, along
with blocks defined by Fig. 3, has 9 transformer heads,
RoPE embeddings, and an EmbedInput patch size of 2.
Timestep embeddings utilized Fourier features. Fine-tuning
parameters are in Table 1.

4.4. Results: Predictive Quality and Examples

The model achieved a test PSNR of 21.5578. Validations
PSNR reached 25.6196 dB, as shown in Fig. 5. Qualitative
examples of successful predictions are presented in Fig. 4,
and common failure modes illustrated in Fig. 6.
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Figure 5. Validation PSNR curve. The normalized pose vec-
tors were clamped at the start of training for stability and then
unclamped (causing dip then rise in PSNR). “Post processed” in-
cludes blur (¢ = 2.0) and histogram matching (o« = 0.8 with
context frames only).
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Figure 6. Common failure mode: object disappearance during
long-horizon generation.

5. Efficient Compression

Training world models on large video datasets is compu-
tationally intensive, making efficient latent token compres-
sion crucial for scalability.

5.1. Task and Evaluation Metric

The 1X Compression Challenge evaluates this capability
by tasking models to predict the next 17 tokenized frames
(3x32x32) given 17 context frames and corresponding robot
states. Performance is measured by the cross-entropy (CE)
loss between predicted and ground-truth tokens, with the
official leaderboard ranking based on the top-500 token CE.

5.2. Approach: Conditional CNN for Latent Token
Prediction

To process the 3x32x32 token grid, we employ a 72M pa-
rameter FiLM-conditioned residual CNN (Fig. 7) trained
from scratch. The CNN architecture is well-suited to cap-
ture local patterns in the latent space. It embeds video to-
kens and actions, processes them via ResNet-style blocks,
and outputs token logits. Hyperparameters are in Table 2.


https://huggingface.co/spaces/Ppffg/1xdemo

T

Reshape
Conv (1x1, 192,000)

Conv (3x3, 256)

x10
o S
| Conv (3x3, 256) |
|
|
: SiLU |
| T ! v.B
| FiLM 1—‘—|
|
| * | Pool
1 BatchNorm
\ |
X A I ConviD (k=5, 256)
X Conv (3x3, 256) |
- — - Z - - - -1 ConviD (k=3, 256)
Conv + Activation A
(3x3, 256) MCP
A *

Concatenate Tokens Pose States

Figure 7. Conditional CNN architecture for latent token predic-
tion.

Table 2. Key Hyperparameters for Compression Model

Parameter Value

Trainable Parameters 72M

Initialization From scratch on train set
Epochs 8

Batch Size 16

Init. LR 2x107°

LR Scheduler Cosine anneal to 1 x 106
Architecture (Selected)

Embedding dim. 32

Channels 128

Residual blocks 10

Condition dim. 128

Loss Specific

KL weight 1x1074

KL annealing 0 — 0.005 (10k steps)

5.3. Results

The CNN achieved a top-500 CE loss of 7.4976 (1st place)
and a full-vocabulary CE of 5.6759 (Table 3). Validation
loss is shown in Fig. 8.

Table 3. Performance Summary on World Modeling Benchmarks

Benchmark Area  Metric Our Score  Rank

Samplin PSNR (Val) 25.3dB —
plng PSNR (Test) 21.5578dB st

Compression CE (Full, Internal) 5.6001 —
pres CE (Top-500, Test)  7.4976 Ist

Train Loss
—— Smoothed Training Loss
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Figure 8. Validation full-vocab CE loss for compression model.

Table 4. Top 3 Performance on World Modeling Leaderboard

Benchmark Area  Submitter Scores Rank
Duke 21.5578dB st

Sampling Micheal 18.5083dB  2nd
vjango 18.4823dB  3rd
Duke 7.4976 Ist

Compression a27sridh 7.9869 2nd
WaterlooVipLab 7.9869 3rd

6. Discussion and Conclusion

We demonstrate effective strategies for long-horizon visual
prediction and efficient state compression, achieving state-
of-the-art performance on both 1X World Model Challenge
benchmarks. Our adapted Diffusion Forcing Transformer
and conditional CNN placed first in the Sampling (21.5578
PSNR) and Compression (7.4976 CE) tasks, respectively,
outperforming the runners-up by significant margins (Table
4).

These results validate that adapting powerful generative
architectures with precise, task-relevant conditioning is a
highly effective strategy for building the core components
of learned simulators. The model’s success in coherent
generation (Fig. 4) stems from effectively grounding visual
changes in agent kinematics via the conditioning modules.
Conversely, object disappearance (Fig. 6), highlights a re-
maining challenge in maintaining long-term state consis-
tency for scene elements not directly manipulated by the
agent. Addressing these coherence issues and integrating
explicit physics priors remain critical open research areas.
Future work building on these capabilities will be a key step
toward realizing the “scaling laws” of robotics and, ulti-
mately, more generalizable embodied intelligence.
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