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How to scale up the autonomous driving models?

GenAD: Generalized Predictive Model
for Autonomous Driving
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Motivation (1/3) | What Makes for Generalized AD Model?

Data Distinction:
+ LLMs pretrained on trillions of unlabeled text tokens exhibit
strong generalization in a variety of domains and applications
- However, existing AD models are established on limited labeled
data, which hampers their generalization
Existing AD Models
Unlabeled Text Data Labeled Driving Data
;%ﬂ\:u ) \ ) . j
0 2 | W L, DEm
Internet scale: World % Small scale: Limited
knowledge. domain knowledge.
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Free of labeling: Easy to ¥ Intrica .e abeling —
collect and scale up. process: Unscalable.
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Strong generalization Poor generalization
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Motivation (2/3) | What Makes for Generalized AD Model?

Lea rning ObjeCtive: No accessible labeled data N
» Supervised by 3D labels TP ILN

¥ Hard to scale without Model K ol ModelL

sufficient labeled data ‘
Undesirable for

» Supervised by expert features modeling challenging

Scalable with developed expert models (e.g., DINOv2) driving scenes

Focusing on specific objects (e.g., centered or large ones)

¥ Ignoring critical details (e.g., small objects)

e Feature map visualization from DINOv2

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



Motivation (3/3) | What Makes for Generalized AD Model?

Our Initiative:
Data:
Learning Objective:
« Supervised by “pixels of future frames” — Video Prediction

Scalable Data (easy to collect from the web)

No 3D labeling needed

Better detail preservation

Learning world knowledge and how to drive inherently

SISISIS

Strong generalization
, collected worldwide
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GenAD | At a Glance
—

Summary: A billion-scale video prediction model trained on web-scale driving videos,
demonstrating strong generalization across a wide spectrum of domains and tasks.
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GenAD - Overview

Data
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GenAD | Dataset
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e Rigorous data collection and
filtering strategy
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GenAD | Dataset
—
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e Rigorous data collection and e Multi-modal and Multi-source Nature
filtering strategy - Sourced from both online videos and public datasets for diversity

- Paired with textual context and command
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GenAD | Dataset KITTI m== OpenDV (full data)
HEE OpenDV-YouTube
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og e S Honda-HAD
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Blatasst (hours) Frames Countries Cities Setup nUFE0
OpenDV
X KITTI [30] 1.4 15k 1 1 fixed , , — , ] |
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GenAD | Dataset
@ Private Data

e Comparison of the data consumption for predictive driving models @ Public Data
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GenAD | Dataset

e Comparison of the data consumption for predictive driving models
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GenAD | Dataset
I @ Private Data

e Comparison of the data consumption for predictive driving models @ Public Data
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Algorithm | Video Prediction Model for Driving
[
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(a) GenAD: Two-Stage Learning
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e Two-stage Training:

o Tuning the image generation model (SDXL) into a highly-capable video prediction model
e Model Specializations for Driving:

o Causal Temporal Attention: coherent and consistent future prediction

o Decoupled Spatial Attention: efficient long-range modeling

o Interleaved temporal blocks: sufficient spatiotemporal interaction
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Result on Tasks (1/4) | Zero-shot Generalization (Video Prediction)

YouTube

12VGen-XL s
e Zero-shotvideo

prediction on unseen
datasets including
Waymo, KITTI and
Cityscapes

e Outperforming
competitive general
video generation
models
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DMVFN &
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(ours) B

12VGen-XL
VideoCrafterl

DMVFN

GenAD
(Ours)
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Result on Tasks (2/4) | Language-conditioned Prediction
I

~—— 2.lLanguage-conditioned Prediction —— e

Control with different )
texts (command/context) —l Imagine

“Change to
the left lane”

Controlling the future evolvement
with language

“Turn right, some parked cars, a parking lot”
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Result on Tasks (3/4) | Action-conditioned Prediction (Simulation)
o

BEVTraj. Observed Cd I Imagined T

. nuScenes 301
Method ‘ Sondition Action Prediction Error (]) 25]
Ground truth 0.9 =
GenAD text 2.54 &
GenAD-act text + traj. 2.02 101
Table 4. Task on Action-conditioned prediction. Compared to o1
GenAD with text conditions only, GenAD-act enables more pre- 0
cise future predictions that follow the action condition. =
30
25
20
15
. . . 10
Simulating the future with ;
. . LI R T
user-specified trajectory
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Result on Tasks (4/4) | Planning

Control with high- Method # Trainable nuScenes
iy level command etho Params. | ADE(]) FDE (})
e ST-P3* [20] 10.9M 2.11 2.90
¢I¢ UniAD* [22] 58.8M 1.03 1.65
[ GenAD ]
\ GenAD (Ours) | 0.8M | 1.23 2.31
i Q_, Table 5. Task on Planning. A lightweight MLP with frozen
Lightweight Predicted GenAD gets competitive planning results with 73 x fewer train-
Planner Trajectory able parameters and front-view image alone. *: multi-view inputs.

e Speeding up training by 3400 times (vs. UniAD)
e Demonstrating the effectiveness of the learned
spatiotemporal representations
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Summary

e Largest Public Driving Dataset:
o OpenDV-2K provides 2059 hours of worldwide driving videos.
e Generalized Predictive Model for Autonomous Driving:

o GenAD can predict plausible futures with language conditions
and generalize to unseen datasets in a zero-shot manner.

e Broad Applications:

o GenAD can readily adapt to planning and simulation.
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(Follow-up work)

How to build a generally applicable driving world model?

Vista: A Generalizable Driving World

Model with High Fidelity and
Versatile Controllability

arxiv.2405.17398



Limitations of Existing Driving World Models
[

5h

within Singapore & Boston
nuScenes

e Representation capacity: low resolution and low frame rate
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e Control flexibility: single modality, incompatible with planning algorithms
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Our Investigation: A Generalizable Driving World Model

I v
e Generalization: largest driving video dataset
i T
Sh —>
within Singapore & Boston § :
nuScenes 1740.h
worldwide

e Representation capacity: high spatiotemporal resolution

288x512

256x448 256x448
=

80x160 128x192 192x384 256x256
X . £
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e Control flexibility: multi-modal action inputs

%,
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Capability of Vista

° H|gh ﬁdellty future predlctlon

Gao et al., Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability



Capability of Vista

e Zero-shot action controllability
turn Ie g0 straiht 7 | turn riht

Reward: 0.815 Reward: 0.849  Reward: 0.832 Reward: 0.860
e Provide reward without ground truth actions ’ %

Gao et al., Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability



Summary

e Vistais ageneralizable driving world model that can:
o Predict high-fidelity futures in open-world scenarios.
o Extend its predictions to continuous and long horizons.
o Execute multi-modal actions (steering angles, speeds, commands, trajectories, goal points).

o Provide rewards for different actions without accessing ground truth actions.

Gao et al., Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability
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